
A PROOFS FOR KALEIDOSCOPIC ORBIFOLD ENUMERATION

In Table 1 we provide an enumeration of 2D kaleidoscopic orbifolds
based on the cardinality of their underlying polygons and the type of
their universal covers. To justify this enumeration, we organize the
computation behind this enumeration into a number of theorems in this
section.

Theorem 1. Given a kaleidoscopic orbifold O =∗k1k2 . . .kN , O is a
spherical orbifold if N ≤ 2 and a hyperbolic orbifold if N > 4. When
N = 4, O is a hyperbolic orbifold with the only exception of ∗2222,
which is a Euclidean orbifold.

Proof. To show these statements, we only need to compute the Eu-
ler characteristics of these orbifolds using Equation 1 in the paper
which states that Euler characteristic of a kaleidoscopic orbifold
O =∗k1k2 . . .kN is χ(O) = ∑

N
i=1

1
2ki
− N

2 +1.

When N = 1, the polygon is a monogon, with one mirror wall that
self-intersects at an angle of π

k . The only good kaleidoscopic orbifold
is when k = 1, i.e. the wall self-intersects at an angle of π . Note that the
orbifold O =∗1 is usually abbreviated as ∗. Thus, χ(O) = 1
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1 > 0. Consequently, this orbifold is spherical. In fact, this orbifold is
a hemisphere with the boundary having the reflectional symmetry.

When N = 2, O =∗k1k2 where 1 < k1 ≤ k2. Consequently, χ(O) =
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> 0, which means that this type of orb-
ifolds are also spherical.

On the other hand, when N ≥ 4, we have ki ≥ 2 for any 1 ≤ i ≤ N.
Thus, χ(O) = ∑
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that the equality holds in the above only when N = 4 and k1 = k2 =
k3 = k4 = 2. Consequently, this type of orbifolds is hyperbolic with the
only exception of ∗2222, which is a Euclidean orbifold.

Theorem 1 indicates that the more walls there are in the kaleidoscopic
orbifold, the more negative its Euler characteristic and the more likely
the orbifold being hyperbolic. In contrast, the fewer the walls the more
positive its Euler characteristic and more likely the orbifold being spher-
ical. The boundary between the set of spherical orbifolds and the set
of hyperbolic orbifolds is drawn when N = 3, i.e. triangular orbifolds.
The next several theorem inspect this scenario, which consists a number
of cases.

Theorem 2. Given a triangular kaleidoscopic orbifold O =∗k1k2k3
and without the loss of generality assuming that 3≤ k1 ≤ k2 ≤ k3, O
is a hyperbolic orbifold with the only exception of ∗333, which is a
Euclidean orbifold.

Proof. First of all, the assumption that 3≤ k1 ≤ k2 ≤ k3 makes sense
since any permutation of k1, k2, and k3 gives rise the same triangular
orbifold.

Again, we only need to compute the Euler characteristics of these orb-
ifolds. Here, χ(O) = ∑
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the equality holds in the above only when k1 = k2 = k3 = 3. Conse-
quently, this type of orbifolds is hyperbolic with the only exception of
∗333, which is a Euclidean orbifold.

Theorem 2 states that for triangular orbifolds, the higher the minimal or-
der of symmetry at the corners, namely k1, the more likely the orbifold
is hyperbolic. We now consider the case when k1 = 2.

Theorem 3. Given a triangular kaleidoscopic orbifold O =∗2k2k3
where 2 ≤ k2 ≤ k3, O is a spherical orbifold if k2 = 2. In contrast,
when k2 ≥ 4, O is a hyperbolic orbifold with the only exception of ∗244,
which is a Euclidean orbifold.

Proof. Since N = 3, when k1 = k2 = 2 we find the Euler characteristic
χ(O) = 1
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> 0. Thus, in this case the orbifold
is always spherical.

On the other hand, when k3 ≥ k2 ≥ 4, the Euler characteristics is
χ(O) = 1
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the equality holds in the above only when k2 = k3 = 4. Consequently,
this type of orbifolds is hyperbolic with the only exception of ∗244,
which is a Euclidean orbifold.

The last remaining case is when O =∗23k3, which is covered in the
next theorem.

Theorem 4. Given a triangular kaleidoscopic orbifold O =∗23k3
where 3≤ k3, O is a spherical orbifold if k3 < 6, a Euclidean orbifold
if k3 = 6, and a hyperbolic orbifold if k3 > 6.

Proof. The Euler characteristic of this type of orbifolds is χ(O) =
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. Thus, χ(O) is positive when
k3 < 6, zero when k3 = 6, and negative when k3 > 6. Consequently, O
is a spherical orbifold if k3 < 6, a Euclidean orbifold if k3 = 6, and a
hyperbolic orbifold if k3 > 6.

Interestingly, each of the above theorems contains a Euclidean orbifold:
∗2222 for Theorem 1, ∗333 for Theorem 2, ∗244 for Theorem 3, and
∗236 for Theorem 4. Not only do these facts confirm that there are
only four Euclidean kaleidoscopic orbifolds, but they also show the
transition from spherical orbifolds to hyperbolic orbifolds with more
walls and higher-order symmetries at the corners.

B OPTICS-BASED VISUALIZATION FOR ORBIFOLD CONCEPT
AND PROPERTIES

Our system can be used to generate example scenarios to illustrate
important concepts and properties of orbifolds such as the following.
Given a room with the statue Lucy, we first mount a mirror each on two
adjacent walls (Figure 15 (a)). This leads to an illusion of a space that
is four times as large as the room without a mirror. The virtual space is
the universal cover of the orbifold (the original room).

In addition, the symmetry for the room can be understood by checking
the orientations of the statues in the space. While the statue has her left
hand up holding the torch in the original room, each mirror generates
a virtual statue who raises the torch by her right hand (a reflection).
Interestingly, reflecting the statue in the first virtual room with respect
to the second mirror leads to the third virtual statue, who switches back
to her left hand to raise the torch. However, this virtual statue faces
the opposite direction of the statue in the original room, i.e. a rotation
by π . One can consider the reflected and rotated virtual copies as the
result of the action of the symmetry group of the underlying orbifold.
This group consists of the identity action, two reflections (one per each
mirror), and one rotation (the composite of the two mirrors).

By moving one of the mirrors to the wall opposite the other mirror,
we obtain a different scene where there are infinitely many copies of



(a) two adjacent mirrors (b) two parallel mirrors (c) four mirrors

Fig. 15: A square room with two or four mirrors. The case in the four mirror room (c) corresponds to a Euclidean orbifold ∗2222.

(a) *333 (b) ∗244 (c) ∗236

Fig. 16: The three triangular Euclidean kaleidoscopic orbifolds.

the original room (Figure 15 (b)). In fact, the universal cover of this
orbifold can be generated by first grouping the original room with one
of the reflections and then translating infinitely many times the two
rooms by a distance that is a multiple of twice the room depth. The
union of the two rooms (the real room and the virtual room) is thus
referred to as a translational cover.

When a mirror is mounted on each wall (Figure 15 (c)), we obtain the
orbifold whose translational cover is the same as the universal cover
of the room shown in Figure 15 (a). This translational cover is then
translated in two mutually perpendicular directions. Note that this is the
first orbifold (in this example) that we have encountered where all walls
have a mirror. This room corresponds to the ∗2222 orbifold. Each of
the corner has an angle of π

2 , thus its notation. At such a corner, there
are 2k copies of the original room forming k pairs. Inside each pair, one
of the rooms is a rotational copy of the original room while the other
is a reflectional copy. A kaleidoscopic orbifold has a transformation
group that is generated by mirror reflections. The subgroup for each
corner is thus Dk, the Dihedral group of order k. In the ∗2222 case, the
symmetry group at every corner is the same, i.e. D2.

∗2222 is one of the four Euclidean kaleidoscopic orbifolds, i.e. whose
universal cover is the Euclidean plane. Figure 16 shows the other three
such orbifolds: (1) ∗333, (2) ∗244, and (3) ∗236. The ∗333 orbifold
(Figure 16 (a)) is obtained by placing three mirror walls in a π
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triangular room. Its translational cover consists of six copies of the
original room (D3). Similarly, the ∗244 orbifold (Figure 16 (b)) is
obtained by placing three mirror walls in a π
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4 triangular room.
Its translational cover consists of eight copies of the original room (D4).
The ∗236 orbifold (Figure 16 (c)) is generated by placing three mirror
walls in a π
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6 triangular room. Its translational cover consists
of 12 copies of the original room (D6). Notice that the symmetry group
can vary from corner to corner. In addition, note that an orbifold does
not depend on which corner is referred to as the first corner. Thus, ∗236

and ∗362 represent the same orbifold. Similarly, the orbifold does not
change when the corners are numbered in the opposite order. Thus,
∗236 and ∗632 also represent the same orbifold.

The optics-based visual metaphor is also capable of showing non-
Euclidean orbifolds, such as those shown in Figures 1, 2, and 14 in the
main paper.


