
A CONVEX POLYGON PLANARITY

Here we present a proof of our planarity criterion for convex polygon
drawings of hypergraphs (Theorem 2 from the main paper), which is
inspired by Kuratowski’s Theorem that states that a graph is planar
if and only if it does not contain a subdivision of the complete graph
K5 or complete bipartite graph K3,3 [34]. Similarly, Theorem 2 states
that a hypergraph has a convex polygon representation if and only if
it does not contain one of our forbidden sub-hypergraphs described in
Section 4.2.1 (Figure 6) of the main paper.

Our proof requires three intermediate results: (1) the definition of
a new graph representation corresponding to some polygon drawing
of the hypergraph which we call the face triangulation graph, (2) a
verification that the face triangulation graph meets the criteria of a
convex representation provided by Thomassen [53], and (3) a proof
that any articulation vertices in the hypergraph must appear on some
face boundary of a convex polygon representation.

We first define connectedness and articulation vertices for hyper-
graphs as well as facial cycles in graph drawings. A graph is connected
if there exists a path between every pair of distinct vertices. Connected-
ness for hypergraphs is defined similarly (see Bretto [10]). A graph is
said to be biconnected if it does not contain any articulation vertices.
An articulation vertex (also called cut-vertex) is a vertex whose removal
makes the graph disconnected. We define biconnected hypergraphs
and articulation vertices for hypergraphs in the same way. From here,
it is natural to consider a biconnected component of a hypergraph: a
maximal set of vertices X ∈V such that the sub-hypergraph induced by
X is biconnected. Note that the graph consisting of a single edge and
its two endpoint vertices is considered a biconnected graph. Similarly,
we consider any hypergraph containing a single hyperedge and its inci-
dent vertices to be a biconnected hypergraph. Biconnected graphs and
hypergraphs are central to our definition of the face triangulation graph
and our first criterion for hypergraph convex polygon planarity. A face
in a planar drawing of a graph is a region in the plane bounded by a
set of vertices and edges. The unbounded region outside of the planar
drawing is counted as the exterior face. The boundary of each interior
face defines an interior facial cycle, and the exterior face defines the
exterior facial cycle. We similarly define a face in a planar polygon
drawing of a hypergraph as a region in the plane not covered by a
hyperedge that is bounded by a set of vertices and polygon sides.

Our first claim regarding convex polygon representations requires a
new definition for the face triangulation graph of a polygon drawing
for a biconnected hypergraph. Let H = 〈V,E〉 be a biconnected, Zykov
planar hypergraph. Then the König graph K(H) = (X ,Y,D) is a planar
graph (Section 4.2.1). Recall that K(H) is a bipartite graph containing
a vertex x ∈ X for each hypergraph vertex v ∈V and a vertex y ∈ Y for
each hyperedge e∈ E where (x,y)∈D if the corresponding hypergraph
elements v and e are incident in H. Let H have a polygon drawing
determined by some planar representation of K(H) where each vertex
v ∈ V has the same location in the plane as its corresponding vertex
x ∈ X (Figure 13 (a,b)). Let the vertices of each hyperedge polygon
be ordered according to their angular coordinates relative to the cor-
responding vertex y ∈ Y . With this polygon drawing of H, the face
triangulation graph T (H) is constructed by the following procedure:

Procedure 3.

1. Let T (H) include all the vertices of H.
2. For two vertices u,v ∈ V , let (u,v) be an edge in T (H) if (u,v)

form the side of a polygon in the drawing of H.
3. Let {F1,F2, . . .} be the interior facial cycles in our current con-

struction of T (H) that correspond to a hypergraph face in the
drawing of H (Figure 13 (b)).

4. For each interior facial cycle Fi, add a vertex ci located in the
interior of Fi and edges (ci,v) for each vertex v ∈ V (Fi) (Fig-
ure 13 (c)).

With this definition, our goal is to show that the face triangulation
graph has a planar drawing with convex facial cycles only for a specific
class of hypergraphs. Thomassen [53] provides a characterization for
such graph drawings which they term convex representations.

(a) Drawing of König graph K(H).

(b) Drawing of hypergraph H.

(c) Interior facial cycles {F1,F2}.

(d) Face triangulation graph T (H).

Fig. 13: Construction of the face triangulation graph from a planar poly-
gon drawing of a hypergraph.

Theorem 4 (Thomassen [53]). Let G be a biconnected planar graph
and let S be a cycle which is the face boundary of some plane represen-
tation of G. Let Σ be a convex polygon representing S. Then Σ can be
extended into a convex representation of G if and only if

(i) each vertex x in G−V (S) of degree at least 3 is joined to S by
three paths that are disjoint except for x,

(ii) each cycle which is edge-disjoint from S has at least three vertices
of degree at least 3, and

(iii) no S-component has all its vertices of attachment on a path of S
corresponding to a straight line segment of Σ.

For our polygon layouts of hypergraphs, we require that each hyper-
edge be drawn as a strictly convex polygon. Thus, we are interested
in the case where the face triangulation graph has strictly facial cycles.
Thomassen notes that if Σ is restricted to being strictly convex, condi-
tion (iii) becomes redundant. Thomassen also notes that every vertex
x∈V (G)\V (S) with degree 2 must be on a straight line segment in any
convex representation of G. It follows that the faces whose boundaries
include x are not strictly convex. Thus, if we require that every face
boundary be strictly convex, Thomassen’s Theorem is reduced to the
following:

Theorem 5 (Strictly Convex Representations of Graphs). Let G
be a biconnected planar graph and let S be a cycle which is the face
boundary of some plane representation of G. Let Σ be a strictly convex
polygon representing S. Then Σ can be extended into a strictly convex
representation of G if and only if each vertex x in G−V (S) is joined to
S by three paths that are disjoint except for x.



The proof of Theorem 5 follows from the proof of Thomassen’s
Theorem provided in [53]. These theorems on convex representations
of graphs motivate an extension to convex polygon representations of
hypergraphs. We use the face triangulation graph T (H) to connect
these theories on graph drawing to hypergraph polygon drawings. First,
we must specify the conditions under which a face triangulation graph
meets the prerequisites for Theorem 5.

Lemma 6. If the polygon drawing of H corresponds to a plane repre-
sentation of K(H), then the face triangulation graph T (H) is a planar
graph.

Proof. Since the König graph K(H) = (X ,Y,D) is planar, we know
that it does not contain a subgraph homeomorphic to K5 or K33. Let
us augment K(H) by adding an edge (u,v) for every u,v ∈ X such that
(u,v) forms the side of a polygon drawing of H. This augmentation
cannot create a subgraph homeomorphic to K33 since it does not add
any bipartite edges. Notice that each hyperedge in H now corresponds
to a wheel subgraph in K(H) which is a planar graph. Since no edges
are added between vertices in Y , it follows that a subgraph homeomor-
phic to K5 cannot contain a vertex y ∈ Y as a non-subdivision vertex.
Further, each edge added between a pair of vertices u,v∈ X can already
be obtained in K(H) by smoothing their common adjacent vertex in
Y . Thus, our augmentation of K(H) does not affect its planarity. Now
let us further augment K(H) by removing all the vertices in X and all
the edges in D. Then we are left with only the vertices corresponding
to hypergraph vertices in H and edges corresponding to the sides of
polygons in the drawing of H. Clearly, this does not affect the pla-
narity of K(H). We can now obtain the face triangulation graph T (H)
by triangulating each interior face of the augmented graph K(H) that
corresponds to a hypergraph face in the drawing of H. Since an interior
face is a bounded region, it follows that we can place the new vertex
inside the bounded region and add edges according to step 4 of Proce-
dure 3 without introducing any edge crossings. Thus, our construction
of T (H) is a planar graph.

Lemma 7. If the polygon drawing of H corresponds to a plane rep-
resentation of K(H), then the face triangulation graph T (H) is bicon-
nected.

Proof. Each hyperedge in e ∈ E(H) is replaced by a cycle Ce in T (H)
following the sides of the corresponding polygon in the drawing of H.
Each cycle Ce defines a biconnected subgraph of T (H). Since H is
biconnected by assumption, it follows that the union of all cycles Ce
for e ∈ E(H) is also biconnected.

We now have the appropriate conditions to make the connection be-
tween Theorem 5 and convex polygon representations of hypergraphs.

Theorem 8. Let H be a biconnected, Zykov planar hypergraph. Then
H has a convex polygon representation if and only if it has a face
triangulation graph T (H) with a strictly convex representation.

Proof. We first show that if H has a face triangulation graph with a
strictly convex representation, then it has a convex polygon representa-
tion. Suppose there is a drawing of H such that the face triangulation
graph T (H) has a strictly convex representation. By the construction of
T (H), each hyperedge in H corresponds to a strictly convex facial cycle
in the drawing of T (H). It follows that if we draw each hyperedge in
H as a polygon following the corresponding facial cycle in T (H), we
can obtain a convex polygon representation of H.

Now we show that if H has a convex polygon representation, then
it has a face triangulation graph with a strictly convex representation.
Suppose that H has a convex polygon representation. Let T (H) be
constructed from this representation of H according to Procedure 3. By
Lemmas 6 and 7, we have that T (H) is planar and biconnected. Let
T (H) be drawn according to the convex polygon representation of H,
and let S be the exterior facial cycle of this drawing. Let Σ be a convex
polygon representing S. Then by Theorem 5, Σ can be extended to a
graph isomorphic to T (H) with strictly convex facial cycles if and only

(a) (b) (c)

(d)

Fig. 14: Illustration of our argument for the proof of Theorem 8. In (a), we
illustrate the subgraph X in the face triangulation graph which is joined to
the exterior face S through two vertices u and v. In (b), we illustrate the
faces F1,F2 enclosing X . In (c) we illustrate how the triangulation of F2
connects X to a vertex w on F2 through the triangulation vertex c2. In (d)
we illustrate how we construct a path from X to S through a sequence of
face triangulations (c1

2,w
1,c2

2,w
2, . . . ,cn

2,w
n) that does not include u or v.

if each vertex x ∈ T (H)−V (S) is joined to S by three paths that are
disjoint except for x. Let x ∈ T (H)−V (S). Since T (H) is biconnected,
there must be at least two vertex-disjoint paths from x to V (S). In the
following paragraphs, we prove that x is joined to S through at least
three disjoint paths by contradiction.

Suppose there are two vertices u,v ∈ T (H) such that every path
from x to V (S) includes u or v. This implies that if u and v were re-
moved, T (H) would become disconnected, and x would be in a separate
connected component from S. Let X be the connected component of
T (H) containing x when u and v are removed. Let Eu,Ev be the sets
of edges between u and V (X), and v and V (X) respectively (Figure 14
(a)). With T (H) drawn according to the convex polygon representation
of H, it must be that X is drawn in the interior of S. It follows that
X is enclosed by two faces F1 and F2 in the drawing of T (H) whose
boundaries contain u and v (Figure 14 (b)). Notice that F1 and F2 can-
not both correspond to strictly convex polygons in the convex polygon
representation of H since such polygons would necessarily share a side
(u,v). This configuration would preclude X from being incident to both
F1 and F2 while also being enclosed by F1 and F2. So, it must be that
either F1, F2, or both are faces in the drawing of T (H) that correspond
to a hypergraph face in a convex polygon representation of H.

Consider the case where F1 corresponds to a polygon in the convex
polygon representation of H and F2 does not. In order for F2 to be drawn
as a simple polygon, which must be the case since our drawing of T (H)
is planar, it must be that the boundary of F2 contains at least one vertex
w 6= u,v, w /∈V (X) (Figure 14 (b)). Similarly, in the case where neither
F1 nor F2 correspond to a polygon in the convex polygon representation
of H, it must be that the boundary of either F1 or F2 contains at least
one vertex w 6= u,v, w /∈V (X). Without loss of generality, suppose that
F2 does not correspond to a polygon in the convex representation of H,



and that the boundary of F2 contains such a vertex w 6= u,v, w /∈V (X).
In this case, the construction of T (H) would have added a vertex c2 to
the interior of F2 and edges (c2,y) for every vertex y on the boundary
of F2. Then X would be connected to the vertex w through a path
containing w which contradicts our observation that w /∈ X (Figure 14
(c)).

We can apply the same argument to an updated subgraph X and
new faces F1 and F2 enclosing X . In this way, we can grow X with a
sequence of vertices (w1,w2, . . . ,wn) until wn is a vertex on S, which
is possible assuming H and T (H) are finite (Figure 14 (d)). Thus, we
have shown that there must exist a path from x to wn ∈V (S) that does
not contain the vertices u or v. This contradicts our assumption that
every path from x to S passes through u or v. Therefore, each vertex
x ∈ T (H)−V (S) is joined to S by three paths that are disjoint except
for x, and Σ can be extended to a strictly convex representation of T (H)
by Theorem 5.

We also wish to consider convex polygon planarity for hypergraphs
that are not biconnected. To do this, we must address the placement
of articulation vertices between biconnected hypergraph components,
requiring the following lemma.

Lemma 9. Let H be a hypergraph with exterior face S and interior
faces R = {F1,F2, . . . ,Fn} for some convex polygon representation of H.
Then H also has convex polygon representations for each face Fi ∈ R
such that Fi is the exterior face and R−Fi +S are the interior faces.

This lemma can be proven in a similar manner to Theorem 8. Now
we can extend Theorem 8 to a more general class of connected hyper-
graphs if we consider each biconnected component individually.

Theorem 10. Let H be a Zykov planar hypergraph with k biconnected
components. Let {B1,B2, . . . ,Bk} be the sub-hypergraphs induced by
the k biconnected components V (Bi) ⊆ V (H). Then H has a convex
polygon representation if and only if each sub-hypergraph Bi has a
convex polygon representation where every vertex x ∈ V (Bi) that is
also an articulation vertex of H is located on a face boundary of some
convex polygon representation of Bi.

Proof. To prove Theorem 10 in the forward direction, suppose that
each sub-hypergraph Bi has a convex polygon representation where
every vertex x ∈V (Bi) that is also an articulation vertex of H is located
on a face boundary of the convex polygon representation of Bi. Then
we can construct a convex polygon representation for H by starting
with the convex polygon representation of Bi. Now consider a sub-
hypergraph B j incident to Bi through the articulation vertex x ∈V (H).
By Lemma 9, B j has a convex polygon representation where the face
boundary containing x is the exterior face boundary. It follows that
we can draw B j with this representation inside the face in Bi whose
boundary contains x without introducing any polygon intersections
(Figure 15). We can repeat this process until each of the biconnected
sub-hypergraphs is drawn with an appropriate convex polygon repre-
sentation.

To prove Theorem 10 in the reverse direction, suppose that H has a
convex polygon representation. Clearly, a convex polygon representa-
tion of any sub-hypergraph B can be obtained by removing the vertices
and hyperedges not in B from the convex polygon representation of H.
Let x be an articulation in H belonging to biconnected sub-hypergraphs
Bi and B j. To reach a contradiction, suppose that x is not located on a
face boundary of some convex polygon representation of Bi. Lemma 9
implies that x is not located on a face boundary for any convex poly-
gon representation of Bi. It follows that if Bi is drawn with a convex
polygon representation, there must be some intersection between a
pair of hyperedge polygons ei ∈ E(Bi) and e j ∈ E(B j) incident to the
articulation vertex x. This contradicts our assumption that H has a
convex polygon representation.

Finally, we restate our main result for convex polygon representa-
tions of hypergraphs.

Fig. 15: Two biconnected sub-hypergraphs Bi and B j incident through an
articulation vertex x can be drawn without intersection if x is on a face
boundary of both sub-hypergraphs.

Theorem 11. (Theorem 2 from the main paper:) Let H be a Zykov
planar hypergraph. Then H has a convex polygon representation if and
only if it does not contain any of the following as a sub-hypergraph:

(a) A 3-adjacent cluster of 2 hyperedges,
(b) A 2-adjacent cluster of 3 hyperedges,
(c) A strangled vertex,
(d) A strangled hyperedge.

Proof. =⇒We prove the contrapositive statement: If H does not have
a convex polygon representation, then it contains one of the forbidden
sub-hypergraphs. By Theorem 10, H does not have a convex polygon
representation if the sub-hypergraph induced by one of its biconnected
components does not have a convex polygon representation. Let B
represent such a biconnected sub-hypergraph. Then by Theorems 8
and 5, it must be that every face triangulation graph T (B) drawn with
exterior face boundary S contains a vertex x ∈ T (B)−V (S) joined to
S by fewer than three paths that are disjoint except for x. Without
loss of generality, let T (B) and S represent the drawing of the face
triangulation graph of B containing the fewest such vertices x.

Consider the case where all of the face boundaries containing x
represent hyperedges in B. If x is on exactly two such face boundaries,
it must be that the corresponding hyperedges in B share at least 3
common vertices including x. This matches the definition of a 3-
adjacent cluster of 2 hyperedges (Figure 16 (a)). If x is on more than
two such boundaries, it follows that x is adjacent to at least three other
vertices. At least one of these adjacent vertices, call it vertex y, must
also be joined to S by fewer than three disjoint paths, otherwise, x
would be joined to S by three disjoint paths. Without loss of generality,
we can consider vertex y instead of vertex x, which may be contained
in a different set of face boundaries, and could fall under one of the
other following cases.

Now consider the case where x is on a face boundary that neither
represents a hyperedge in H nor corresponds to a part of a hypergraph
face in B. It follows that in the polygon drawing of B, x is positioned in
the interior of some hyperedge polygon. This indicates the existence of
a 2-adjacent hyperedge cluster of 3 hyperedges in B (Figure 16 (b)).

Now consider the case where x is on a face boundary corresponding
to part of a hypergraph face in B. Then x is either one of the face
triangulation vertices c from step 4 of Procedure 3, or is adjacent
to such a vertex. If it is the latter, it follows that the adjacent face
triangulation vertex c is also joined to S by fewer than three disjoint
paths. Without loss of generality, assume that x = c. Then x is the
central vertex of a wheel subgraph W in T (B). Since x is adjacent to
every other vertex in W , it follows that W is joined to the rest of T (B)
by fewer than three disjoint paths. This configuration corresponds to a
strangled hyperedge in B (Figure 16 (c)).

Thus, we have accounted for all possible configurations of x, all
of which indicate the existence of a forbidden sub-hypergraph in the
biconnected sub-hypergraph B. Theorem 10 further implies that H does
not have a convex polygon representation if it contains an articulation
vertex x such that x does not appear on a face boundary of any con-
vex polygon representation of some sub-hypergraph B induced by a
biconnected component of H containing x. Then the hyperedges that



(a) 3-adjacent cluster of 2 hyperedges

(b) 2-adjacent cluster of 3 hyperedges

(c) Strangled hyperedge

Fig. 16: Forbidden sub-hypergraphs (middle) drawn according to a plane
embedding of their König graphs (left) and their corresponding face
triangulation graphs (right). The vertices highlighted in orange have
fewer than 3 disjoint paths to the exterior face boundary.

are incident to x in B completely surround x in every convex polygon
representation of B. This can only be possible if the hyperedges inci-
dent to x in B form a cycle in B− x. This matches the definition of a
strangled vertex sub-hypergraph (Figure 6 (c) from the main paper).
⇐= We prove the contrapositive statement: if H contains any of

the forbidden sub-hypergraphs, it does not have a convex polygon
representation. First, consider the case where H contains a 3-adjacent
cluster of 2 hyperedges. When embedded in the plane, the three shared
vertices in the 3-adjacent cluster must either form a triangle or be
colinear. If they form a triangle, the intersection of two convex polygons
containing the vertices must at least equal the area of the triangle. If the
vertices are colinear, then the polygons containing them are not strictly
convex. Thus, H does not have a convex polygon representation.

Now consider the case where H contains a 2-adjacent cluster of 3
hyperedges. Then the locations of the two shared vertices in the cluster
define a line splitting the plane into two half-planes. Let {e1,e2,e3} be
the three hyperedges in the cluster. Without loss of generality, e1 can
be drawn with its remaining vertices in one half plane, and e2 can be
drawn with its remaining vertices in the other half plane, and there is no
intersection between the polygons for e1 and e2. For e3 to be drawn as a
convex polygon, its remaining vertices must be drawn in one half plane
or the other, so it must have a nonzero intersection with the polygon
for e1 or e2, and H does not have a convex polygon representation.

Now consider the case where H contains a strangled vertex x∈V (H).
Let C be the cycle among a proper subset of the vertices adjacent and
hyperedges incident to x. If the vertices V (C) are positioned in the plane
such that their convex hull does not match their order in the cycle, it
must be that the cycle crosses over itself and the drawing is non-planar.
Otherwise, if x is located outside the convex hull of V (C), it must be
that one or more of the hyperedges in E(C) have polygons crossing the
interior and boundary of the convex hull, so the drawing is non-planar.
If x is located inside the convex hull of V (C), it follows that if each
hyperedge in E(C) is drawn as a convex polygon, the interior of the
hull is completely tiled by these polygons. Thus, any other hyperedge
polygon incident to x must intersect with one of the hyperedge polygons

in E(C), so H does not have a convex polygon representation.
Now consider the case where H contains a strangled hyperedge

e ∈ E(H). Let C be the cycle among a proper subset of the vertices
incident and hyperedges adjacent to e. If the vertices V (C) are located
such that their convex hull does not match their order in the cycle, it
must be that the cycle crosses over itself and the drawing is non-planar.
Otherwise, if a vertex x incident to e but not in V (C) is drawn inside
the convex hull of V (C), it follows that e cannot be drawn as a strictly
convex polygon. If x is drawn outside the convex hull of V (C), it
follows that the drawing of e has nonzero intersection with at least
one hyperedge polygon in E(C), so H does not have a convex polygon
representation.

B PAPER-AUTHOR RESULTS

Figure 17: An enlarged version of Figure 10 from the main paper.
A paper-author hypergraph dataset containing 1008 vertices and 429
hyperedges (a) is simplified with our framework down to the coarsest
allowable scale H1214 (c) and the layout is optimized. Then the simplifi-
cation is iteratively reversed, and the layout refined at each intermediate
scale, an example of which is shown in (b), until the original scale H0
is reached.

C EYE TRACKING GAZE PATHS

Figure 18: An enlarged version of Figure 11 from the main paper. Gaze
fixation paths of two participants answering the same question for the
trade agreement dataset in our user survey. The participant with the
gaze path on the left did not study the dual hypergraph and answered
the question incorrectly. The participant with the gaze path on the
right studied both the primal and dual hypergraph visualizations and
answered the question correctly.

D EYE TRACKING FIXATION TIMELINES

Figure 19: An enlarged version of Figure 12 from the main paper.
Gaze fixation timelines of two participants answering a question in
our user survey. The vertical axis indicates different regions on the
participant’s screen, including the question text and visualization scales.
The horizontal axis represents the time in seconds that a participant
spent on the question. The vertical lines in the plot indicate when the
participant selected an answer. The blue lines indicate a correct answer
and the red lines indicate an incorrect answer.



(a) Original Scale

(b) Intermediate Simplified Scale

(c) Coarsest Simplified Scale

Fig. 17: Enlarged versions of the images in Figure 10 from the main paper. Final optimized layout of the original scale (a), coarsest simplified scale
(c), and one intermediate simplified scale (b) for a paper-author hypergraph dataset.



Fig. 18: Enlarged versions of the images in Figure 11 from the main paper. Gaze fixation paths of two user survey participants.

Fig. 19: Enlarged versions of the images in Figure 12 from the main paper. Gaze fixation timelines of two user survey participants.


