
A DEGENERATE POINT INDEX

In this section, we provide detail of our theoretical analysis on the index
of degenerate points in a 3D symmetric tensor field (Section 4.2).

Let R be a topological disk without self-intersections such that there
are no degenerate points on its boundary, ∂R (the circles in Figure 7
(a-b)). We consider the right-handed frames formed by the unit major
eigenvector v1, the medium eigenvector v2, and the minor eigenvector
v3 of the tensor fields on ∂R. There are four ways of selecting a right-
handed frame from the eigenvectors. Let f0(p) = (v1,v2,v3) be one
such frame. Then f1(p) = (v1,−v2,−v3), f2(p) = (−v1,v2,−v3), and
f3(p) = (−v1,−v2,v3) are the other choices of such frames (Figure 7
(left)). Let rm (0≤ m≤ 3) be the 3D rotation that maps the X-axis to
the major eigenvector in fm(p), the Y -axis to the medium eigenvector,
and the Z-axis to the minor eigenvector (Figure 7 (left)). Define rx, ry,
and rz as the 180◦ rotation around the X-, Y -, and Z-axis, respectively.
Then we have

r1 = r0rx (9)
r2 = r0ry (10)
r3 = r0rz (11)

We choose p0 ∈ ∂R and travel along ∂R for one round in order to
inspect the behavior of the continuous eigenframe that is initially set to
be f0(p0) (Figure 7 (a-b)). Since the tensor field is continuous over R
and there is no degenerate point on ∂R, we know that the eigenvector
fields are also continuous over ∂R. Therefore, when returning to p0
after a full boundary walk, the frame f ′(p0) must be fm(p0) for some
0≤ m≤ 3. That is,

r′(p0) = r0(p0)c (12)

where c = 1, rx, ry, or rz. Thus c = r0(p0)
−1r′(p0). Next, we show

that c is a curve invariant.

Lemma 1. Given the conditions above, c is independent of the coor-
dinate system for the space.

Proof. Let S and T be two right-handed orthogonal coordinate systems
(Figure 14). Let P be the change-of-basis matrix from T to S. Note
that P−1 can also be considered as the rotation that takes the coordinate
system S to the coordinate system T .

Therefore, r0,S(p0), the rotation that takes S to the eigenframe
f0(p0), is related to r0,T (p0), the rotation that takes the T to the
eigenframe f0(p0), as follows: r0,S(p0) = r0,T (p0)P−1. Similarly,
r′S(p0) = r′T (p0)P−1.

We now consider cS = (r0,S(p0))
−1r′S(p0). This is equivalent

to cS = (r0,T (p0)P−1)−1r′T (p0)P−1 = P(r0,T (p0))
−1r′T (p0)P−1 =

PcT |SP−1.
We consider the matrices corresponding to cS and cT under S. Thus,

cS|S = P|S(cT |S)P−1|S. Since P|S and P|−1
S commute, we have P|S =

P|T and P−1|S = P−1|T . Thus, we drop the subscripts and only use
P and P−1. On the other hand, cT |S = P−1(cT |T )P. Thus, cS|S =
P(cT |S)P−1 = P(P−1(cT |T )P)P−1 = cT |T .

Therefore, c is independent of the choice of the coordinate system.

Lemma 2. Given the conditions above, c is independent of the initial
frame chosen.

Proof. Assume that we have chosen fm(p0) as the initial frame where
m 6= 0. Let p1, ... pn be a sequence of points on ∂R in the direction of
the travel such that pn = p0 (Figure 7 (a-b)). Moreover, we choose the
sample points so that at each sample point p`, there is a unique k0 that
minimizes d( f0(p`), fk(p`+1)), the distance between the two frames
(the angle of the minimal 3D rotation that takes the first frame to the
second frame). For convenience, we reorder the four frames at p`+1
such that fk0(p`+1) becomes f0(p`+1). Under the new numberings,
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Fig. 14: This figure illustrates the change of the basis of S, T , and f0(p0).

we define s`+1 to be the unique rotation that takes the frame f0(p`) to
f0(p`+1). That is, s` = r0(p`+1)(r0(p`))−1. Note that s`( fm(p`)) =
f0(p`+1) for 1≤ m≤ 3. Therefore,

r′m(p0) = snsn−1..s1rm(p0) = snsn−1..s1r0(p0)c = r′(p0)c (13)

Consequently, c′ = (rm(p0))
−1r′m(p0) = c−1(r0(p0))

−1r′(p0)c =

c−1cc = c. Thus, c does not depend on the choice of the initial frame.

Lemma 3. Given the conditions above, c is independent of the direc-
tion of travel along ∂R.

Proof. Assume that we have chosen f0(p0) as the initial frame. Let p1,
... pn be the sequence of points on ∂R from Lemma 2 (Figure 7 (a-b)).
Furthermore, let s` = r0(p`+1)(r0(p`))−1 be the unique rotation that
takes the frame f0(p`) to f0(p`+1). Then we have s−1

` ( fm(p`+1)) =
f0(p`) for 1≤ `≤ n and 0≤ m≤ 3.

We now consider travelling in the opposite direction along ∂R,
that is, p0, p′1 = pn−1, ... p′n−1 = p1 and p′n = p0. Therefore,
c′ = (r0(p0))

−1s−1
n ...s−1

1 r0(p0) = ((r0(p0))
−1s1...snr0(p0))

−1 =

(r0(p0))
−1r′(p0))

−1 = c−1 = c.
Thus, c does not depend on the travel direction.

Lemma 4. Given the conditions above, c is independent of the choice
of the starting point p0.

Proof. Let p0 6= p′0 be two points on ∂R. Choose f0(p0) as the initial
frame. Let p1, ... pn be a sequence of points on ∂R described in
Lemma 2 (Figure 7 (a-b)). Moreover, assume that pk = p′0 for some
1≤ k < n. Using the process described Lemma 2, we can find f0(p′0)
such that r0(p′0) = sksk−1...s1r0(p0).

We now consider travelling starting from p′0 in the se-
quence of pk+1, ..pn−1, p0, ...pk−1, pk = p′0. Then, r′(p′0) =

sksk−1...s1sn...sk+2sk+1r0(p′0). Therefore, c′ = (r0(p′0))
−1r′(p′0) =

(sksk−1...s1r0(p′0))
−1(sksk−1...s1sn...sk+2sk+1r0(p′0)) =

(r0(p0))
−1sn...sk+1r0(p′0) = (r0(p0))

−1sn...sk+1(sk..s1r0(p0)) = c.
Therefore, c does not depend on the choice of the initial point p0.

Lemma 5. Given two topological disks R1 and R2 that intersect only
at their common boundary such that R1

⋃
R2 is still a topological disk,

the winding number of the boundary of R1
⋃

R2 is the product of the
winding numbers of R1 and R2.

Proof. Note that the boundary ∂ (R1
⋃

R2) = ∂R1
⋃

∂R2. Let p0 ∈
∂R1

⋂
∂R2 be the starting point and travel the boundary of R1

⋃
R2.

This is equivalent to traveling around the boundary of R1 and R2 once
each, passing through p0 once before returning to it a second time.
Since the quaternion of a 3D rotation from concatenating two 3D
rotations is the product of the quaternions for the two 3D rotations,
the winding number of the boundary of R1

⋃
R2 is the product of the

respective winding numbers of the boundary of R1 and the boundary of
R2.



Lemma 6. Given a 3D tensor field T (x,y,z) and R, a topological ball
on which T (x,y,z) is linear, the major eigenvector field of T (x,y,z), a
3D line field, can be turned into a 3D vector field inside R. Similarly,
if T (x,y,z) is planar on R, then the minor eigenvector field of T (x,y,z)
can be turned into a 3D vector field.

Proof. Since R is a topological ball, it is simply connected and finite.
If T (x,y,z) is linear on R, the major eigenvector field is always well-
defined in R, i.e., without singularities. Thus, it can be turned into a 3D
vector field from the result of Markus [20], which states that a 3D line
field can be turned into a 3D vector field on a simply-connected, finite
region if the line field does not have any singularities in the region. The
proof for the minor eigenvector field in planar regions is similar.

Theorem 7. Given a 3D tensor field T (x,y,z) and a point p0 (possibly
a degenerate point), there exists a small enough neighborhood R of p0
such that any topological disk inside R has the same winding number
for its boundary if the disk contains p0 but no other degenerate points of
T (x,y,z) and has no self-intersection. In this case, the winding number
is i if p0 is a linear wedge,−i if p0 is a linear trisector, k if p0 is planar
wedge, −k if p0 is planar trisector, and 1 if p0 is not a degenerate
point.

Proof. If p0 is a linear degenerate point, then there exists a neighbor-
hood R of p0 such that the major eigenvector field of T (x,y,z) can be
converted to a continuous vector field inside R without singularities
(Lemma 6). According to the Flow Box theorem [2], there exists a
region R′ ⊂ R and a diffeomorphism φ from R′ to another space F such
that the major eigenvector field (now a vector field on R′) to a constant
vector field defined on F . Without loss of generality, we can assume
that the major eigenvector at p0 has the same length as its image under
φ , i.e., a 3D rotation without scaling. Since φ is a diffeomorphism, it is
continuous. Therefore, it is possible to find an even smaller set R′′ ⊂ R′
such that the diffeomorphism φ inside R′′ can be approximated by
φ(p0) with a sufficiently small error ε. Notice that under φ , the tensor
field T ′ = φ(T (x,y,z)) is also a tensor field whose major eigenvectors
are all parallel. In addition, φ(p0) is a linear degenerate point of T ′.
Similarly, a topological disk D containing p0 will be mapped to a topo-
logical disk containing φ(p0). When ε is small enough, the winding
number of the boundary of D is the same as the winding number of
the boundary of φ(D) since φ(p0) is a 3D rotation on the eigenvectors
of the tensor field. We can further select R′′ to be small enough such
that any loop inside R′′ is close to being planar, i.e., contained in some
plane. Consequently, the image of such a loop under φ is also nearly
a planar loop. We select a point p0 and travel along the loop. Based
on Lemma 1, we can choose any coordinate system and the winding
number will not change. Thus, for simplicity, we choose the eigenframe
at the start point p0 to be coordinate system. Therefore, the quaternion
for p0 is 1. Since the major eigenvector field is constant along the loop,
the quaternions corresponding to the eigenframes along the loop have
the form w+ xi, i.e., no j and k components. Thus, when returning to
p0, the quaternion corresponding to p0 must be ±1 or ±i. When the
region R contains no singularity, the winding number is 1. Otherwise,
it is i if the singularity contained in R is a wedge or −i if the singularity
is a trisector.

Similarly, in a planar region, the winding number is 1 if the region
contains no singularity, and is k or −k if the singularity is a wedge or a
trisector, respectively.

Corollary 8. Given a 3D tensor field T (x,y,z) and a topological disk
R free of self-intersections, assume that R contains only one degenerate
point inside. If furthermore the normal to the surface R is nowhere per-
pendicular to the dominant eigenvector field, then the winding number
of the boundary ∂R is the same as the index of the degenerate point.

Proof. Given any point p in R, there exists a sufficiently small neigh-
borhood Up such that Theorem 7 is satisfied. These neighborhoods
give an open cover of R. Since R is finite and closed, any of its open
covers has a finite subcover [27]. Consequently, we can find a finite
neighborhood U1, U2, ... Um for some m > 0 such that their union

Type I Type II
Fig. 15: The two types of Reidemeister moves that can reduce the
number of crossing points in a link diagram.

covers R. In Addition, ∂R, a loop, is covered by U1, ... Um. It is
thus possible to decompose ∂R as the union of a number of closed
curves, each of which is inside one such neighborhood Uk for some
1 ≤ k ≤ m. Therefore, the winding number of ∂R is the product of
the winding numbers of each of such closed curves (Lemma 5). Since
R is nowhere perpendicular to the dominant eigenvector field, the dot
product between surface normals (chosen consistently over R) and the
dominant eigenvector field over R is either always positive or always
negative.

Since R contains only one degenerate point, we can select the closed
curves in the open cover such that the degenerate point is inside only
one topological disk bounded by the closed curves. For this curve, the
winding number is either i, −i, k, or −k while for the other closed
curves, the winding number is 1. Thus, the winding number of ∂R is
±i or ±k due to Lemma 5.

B JONES POLYNOMIAL COMPUTATION

In this section, we provide some detail on the technique of computing
the Jones polynomials [19], which we implement in our system. Recall
that Jones polynomial of a given curve network is defined in terms
of the link diagram of curve network, though it is an invariant as it
does not depend on the actual choice of the plane onto which the curve
network is projected.

As the Jones polynomial is defined recursively, computing it is an
NP-hard problem in terms of the number of crossing points in the
link diagram. Livingston [19] provides an approximation algorithm
by involving the Reidemeister moves (Figure 15), which can reduce
the number of crossing points without changing the polynomial itself.
Note that the reconnection operations in the definition of the Jones
polynomials (Figure 10 (a-2.1 and a-2.2)) of a curve network generates
two new curve networks, each of which has one fewer crossing points
than the original curve network. However, the Jones polynomials of the
two new networks are usually different from that of the original one,
hence the exponential growth of the computation time in terms of the
number of crossing points in the original curve network.

We follow closely the technique of Livingston [19]. Given a degen-
erate loop in the 3D space, we apply the principal component analysis
on the points on the loop, which gives us a new coordinate system.
We next project the curve onto the XY -plane of the new coordinate
system and ensure we have a regular projection where there are no
overlapping edges and no three points projected to the same point on
the plane [19]. If it is not a regular projection, we apply a small but
random 3D rotation to the coordinate system from the principal com-
ponent analysis. Since irregular projections are structurally unstable,
an arbitrarily small perturbation in the coordination system can usually
generate a regular projection. We then construct the link diagram by
tracing the crossings on the projected curve. Since the complexity of
the Jones polynomial computation is O(2n) for n crossing points, we
simplify the link diagram by reducing the number of crossings points
with types I and II Reidemeister moves. This involves the computation
of braid groups, and we refer our readers to [19] for more detail on
this part of the algorithm. Lastly, we compute the Jones polynomial
of the simplified curve network by applying the first and second type
of simplification rules [19]. We iteratively perform the following two
steps. First, any loop in the network free of crossing points with the rest
of the networks is removed. When no such loop exists in the remaining
network, we remove a crossing with two local reconnection. This leads
to two new networks, which are sent to the same routine to compute
their respective Jones polynomial. This recursion will eventually lead
to the Jones polynomial of the original curve network. Note that we
only compute the Jones polynomial for individual degenerate loops for
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Fig. 16: This figure shows the simulated metal hook data with either a
single-load scenario (a) or a multi-load scenario (b).

knot identification and classification, even though the computation of
the Jones polynomial of a loop may result in a curve network in the
middle of the computation due to the simplification rules. Finally, when
the Jones polynomial is not a constant, we regard the degenerate loop
as a knot and add ∗ to the corresponding node in the topological graph.
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Metal hooks are essential to the lifting mechanism
used in construction and transportation engineer-
ing. They are often used to lift or pull different
kinds of goods that are of varying sizes and shapes.
To be able to create cost-effective designs for these
hooks, it is important to evaluate their use under
different loading conditions. Here we contrast two
types of loading conditions for the metal hook ex-
ample published in SIMULIA 2020. The first type
loads the hook from one angle that is shifted to the left from the ver-
tical direction with 1 kN and the second type adds a load pulling in
the horizontal direction with 1 kN. The latter simulates a use where
the hook carries more than one load. We note that the two scenarios
produce very different numbers of regions and degenerate curves. The
Betti numbers for the single load scenario are higher for the planar and
the linear regions. This was not expected due to the simple load and
could not be observed without the topological graph. Moreover, for the
second scenario with two loads, there is no region containment as ob-
served for the first scenario in which two planar regions each contains a
linear region. This comparison inspires more testing to corroborate the
general practice where multiple loads are sometimes applied to ensure
little rotational movement of the hook to avoid swinging or tipping.

D EIGHT PILE GROUP FOUNDATION WITH CAP

Pile groups are effective foundation structures that support buildings
or bridges [4]. Figure 17 illustrates an eight pile group. Knowing
how the load distributes and how the material deforms is important to
structure integrity evaluation and maintenance scheduling. The most
common material used for these pile groups is concrete which is of
crushed stones, sand and water. The mixing causes the concrete to
have different Poisson’s ratios; that is, a pile group may have a range
of Poisson’s ratios for its piles. Here we contrast two cases where the
variation of Poisson’s ratios is different. The first case has 0.13 for the
center 4 piles and 0.20 for the 4 piles on the ends, while the second
increases the Poisson’s ratios for the middle 4 piles to 0.24. The latter
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Fig. 17: In this eight pile group, there is a cap that is 13.25×5.75×2.80
volume meters on top of the piles. Each pile has a diameter of 1.5 meters.
The cap is attached to the piles with no movement allowed. The ends of
the piles are fixed.
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(a) Poisson’s ratio 0.13 (b) Poisson’s ratio 0.24
Fig. 18: Tensor field topology and its topological graph for the pile cap
in an eight pile group foundation. The first case (left) has its four center
piles at a lower Poisson’s ratio (0.13) and its four piles at the ends at a
higher Poisson’s ratio (0.20). The second case (right) has its four center
piles at a higher Poisson’s ratio (0.24) while maintaining the Poisson’s
ratios of the four piles at the ends at 0.20.

simulates a more incompressible center than the ends and the former is
the reverse. We add a vertical load, 1000 kN, at the center top (3×3
square meters) and a small periodic loading to the sides of the pile cap.

Using the topological graphs
(Figure 18), we can observe that
there are more linear regions
representing extensions than the
planar regions representing com-
pression for the first case while
there are the same number of lin-
ear and planar regions in the second case. The Betti numbers are higher
for the regions in the first case. Conjectures such as having a more
incompressible center group, i.e., higher Poisson’s ratio for the center
piles, leads to a more uniform material behavior for the cap become
plausible; however, only extensive studies can warrant these statements.
Our topological graphs can aid in establishing these conjectures to
provide practical guidance on the pile arrangement for long-lasting
concrete foundations.

E ADDITIONAL O-RING ANALYSIS

In this section, we add some discussions on the results from varying the
periodicity of loading on the O-ring. We provide a group of examples
while varying p and q in Equation 8.

Our results are shown in Figure 19 as an array of sub-figures. Along
the vertical direction, the value of p increases and along the horizontal
direction, q increases. We first note that for high values of p and q, the
topological graphs are more complex in terms of increased number of
regions and degenerate curves. For q = 1 which is shown in the left-
most column, there is no region containment. For q = 2, a new planar
region appears for each value of p, and it resides inside the green region.
One of the straight purple edges representing the neutral surfaces is
encoded with the glyph that shows containment. For q = 3, this planar
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Fig. 19: We evaluate the compression force of p = 0,3,4, q = 1,3,4, and α = 0.3. For each scenario, we show the tensor field features on the left and
the topological graph on the right. As p increases, the number of the features such as degenerate curves increases due to the periodicity of the
compression force. On the other hand, As q increases, trisector degenerate curves start to appear. We also show the glyphs on a cross-section for
the case of p = 0 to indicate the eigenvector fields.

region starts to host a linear region, which itself contains another planar
region. The appearance of the nested regions is a direct response of
material deformation to the boundary condition change. Furthermore,
linking among linear degenerate curves starts to form. In particular, for
p = q = 3, a trefoil appears. As q increases to 4, this trefoil breaks and
many more degenerate curves appear and link. For p = q = 4, a knot
with a Writhe number 8 appears. More complex linking and knotting
behaviors are expected as p and q increase. During this deformation,
degenerate curves that are either extension or compression dominant
will intertwine with each other. The knottiness may indicate a match
of the physical domain boundary with the high stress loading spots
that enclose the same material deformation behavior entirely inside the
physical domain. In future work, we plan to continue with the exper-
iments for many more scenarios to detect patterns and mathematical
reasons.


