Modeling Experts and Novices in Citizen Science Data

Jun Yu, Weng-Keen Wong, Rebecca Hutchinson {yuju,wong,rah}@eecs.oregonstate.edu

Species Distribution Modeling important for:

- Understanding specieshabitat relationships
- Conservation and reserve design
- Predicting effects of climate / land use change

Predicted distribution of tree swallows across North America (from D. Fink)

Many research questions require data to be collected at broad spatial and temporal scales

Citizen science: scientific research in which volunteers from the community participate as field assistants [Cohn 2008]

Pros:

- Inexpensive
- Can collect data over large spatial areas and long time periods

<u>Cons</u>

• Reliability of data

- One of the largest citizen science programs
- Online checklist database developed by Cornell Lab of Ornithology and National Audubon Society
- Birders submit checklists of birds observed (> 1.5 million checklists in Jan 2010)

Can we use eBird data for accurate SDM?

• Main issue: birders have different levels of expertise

- How reliable is the data?
 - Data reviewed through a verification process
 - But biases still exist

Labeled Training Set

[Mackenzie et al. 2006]

Assumptions on OD model

- Site closure assumption: species occupancy status stays the same over the site visits
- No false detections: can't detect a bird if it doesn't occupy the site

Occupancy-Detection-Expertise (ODE) model

ODE model details

- Allow for false detections. Results in four sets of parameters:
 - True detection and false detection parameters for experts
 - True detection and false detection parameters for novices
- Introduces an identifiability problem
 - Add constraint during training
- Train using Expectation-Maximization

- 1. Want to predict occupancy (Z_i) but ground truth not available. Instead, predicting observation (Y_{it})
 - eBird data from NY, breeding season (2006-2008)
 - Expertise nodes observed in training data, unobserved in test data
 - Evaluating spatial data is challenging: use checkerboarding
 - Compare with Logistic Regression and OD model

Average AUC on four hard-to-detect bird species

- 2. Predict Expertise (E_j) of birder given checklist history
 - Site occupancy (Z_i) is unobserved in both training and testing
 - Two-fold cross-validation on birders
 - Repeat 20 times and report average AUC
 - Compare against Logistic Regression

Average AUC on four hard-to-detect bird species

The **Cornell**Lab **S** of Ornithology

3. Discovering differences between experts and novices

Average Difference in True Detection Probability

Future work

- Discover sources of novice bias
- Improve accuracy of species distribution models by adjusting for this novice bias
- Incorporate tree-models in occupancy and detection components
- Semi-supervised version of ODE model

Acknowledgements

- Cornell Lab of Ornithology:
 - Marshall Iliff
 - Brian Sullivan
 - Chris Wood
 - Steve Kelling
- This project supported by NSF grant CCF 0832804

