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In this work: both
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FHE secret-sharing garbled circuits

+ low communication + low communication + low round complexity
+ low round complexity — high round complexity + good for boolean
— high computation - bad for arithmetic

— low-depth only

conventional wisdom:
NN are mostly arithmetic operations = GC is a bad fit
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very efficient for arithmetic operations

inefficient for comparisons, etc
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Garbling scheme of Ball-Malkin-Rosulek-2016
very efficient for arithmetic operations

inefficient for comparisons, etc

U

Improvements to BMR16 garbling techniques
targeting common NN activation functions
approximate activations = accuracy-efficiency tradeoff
Implementation @ github.com/GaloisInc/fancy-garbling

TensorFlow model support



XONN

Sadegh Riazi, Samragh, Chen, Laine, Lauter, Koushanfar
garbled circuit NN evaluation

binarized NN : {0, 1} signals

requires retraining

comparable performance

ours

garbled circuit NN evaluation
discretized NN : {0, ..., N} signals
can discretize existing NN

comparable performance

future work = combine techniques, retrain NN with smaller discretization
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free addition: unary/projection gates:
x mod p x mod x) mod
— x+ymodp) p GD ¢(x) q )
y mod p

arbitrary ¢ : Z, — Zg
free to garble .
cost to garble: p — 1 ciphertexts

(= free multiplication by constant) (moduli should remain small)

[BMR16] construct multiplication, high-fan-in boolean, etc from these building blocks



residue representation:

[xllcrt = (x mod p1, x mod po,...x mod pk)

addition mod [[; p;: free
multiplication mod []; p;: cheap: O(}}; p;)

other things (comparisons, etc): expensive



residue representation:

[x]lcrt = (x mod p1, x mod po,...x mod pk)

linear combination, public weights: free
linear combination, private weights: cheap: O(};; p;)

activation function, max-pooling, etc: expensive



relu(x) = x - sign(x)

W

max(x, y) = x + relu(y — x)

x is in residue representation



W

relu(x) = x - sign(x) max(x, y) = x + relu(y — x)

1 x>0 improvements to
mult by bit sign(x) = BMR16 garbling in
S 0 x<0 this work
cross-modulus mult approx sign = ap-
r\ prox relu + approx
max
generalized half-gates mixed-radix addition

x is in residue representation
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1 x>P/2

[xlert = (x mod py, ..., x mod pk); P=1T],pi | sign(x) = {0 x <P/

S—— S———
X1 Xk

= ),;aix; (mod P)

our approach:

approximate fractions inside },

X
— Zi a;ix; + qP (overZ)  * e.g, 10-bit binary
— % — Zl % 4 q add fractions (ignore integer.parlt)
o, * (non-free) binary adder circuit
= [%] 1 — [Zl IT] 1 check whether result > 1/2

* most significant bit of )]

. X
Slgn =1 [Zl %] 1 > % choice of “fixed-pt resolution”

affects cost & accuracy



# primes [[; p; fixed-point resolution correct cost
108360 = 86 -7 -6° -5 =100% 637

; 919.0 10560 = 88 -6 -5 - 4 > 99.99% 470
1200=60-5-4 > 99.9% 315

1975680 =98-9-8%-7-5  =100% 1078

107100 = 102 - 7 - 6 - 52 > 99.999% 770

8 2232 10920=78-7-5-4 > 99.99% 574
1170=78-5-3 > 99.9% 385

31933300 = 76 - 7° - 52 =100% 1534

119700 = 114 -7 - 6 - 52 > 99.999% 933

9 2277 12600 = 84 - 6 - 52 > 99.99% 696
1260 = 140 - 9 > 99.9% 465

791920800 = 202 - 11% - 6* - 52 =100% 2294

128520 = 102-7 - 6% -5 > 99.999% 1122

10 232:6 13440 =112-6-5-4 > 99.99% 843
1330 = 190 - 7 > 99.9% 547
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MNIST-A (128+128+10 neurons) @ 22-bit discretization
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weights | time (s) comm (MB) accuracy (%)
boolean garbling private | >300 3407 96.8
boolean garbling public 53 618 96.8
ours private 1.98 128 96.8
ours public 0.12 4.43 96.8
ours (99.99% activation) private 1.98 127 95.7
ours (99.99% activation) public 0.10 2.77 95.7
SecureML private 4.88 - 93.1
MiniONN private 1.04 47.6 97.6
Gazelle private 0.03 0.5 -
XONN private 0.13 4.29 97.6

MNIST-A (128+128+10 neurons) @ 22-bit discretization



garbled circuits are better than you thought
for arithmetic computations, NNs
... especially for NNs with public weights

approximate activation functions are great!

ia.cr/2019/338
github.com/GaloisInc/fancy-garbling



