

garbled neural networks are practical

...according to marshall ball columbia university

brent carmer galois inc

tal malkin columbia university

mike rosulek oregon state university

nichole schimanski galois inc

private classifier

ML classification as service

usually only **weights** are private black-box reconstruction of weights!

private classifier

ML classification as service

usually only **weights** are private black-box reconstruction of weights!

vs. public classifier

e.g., spam filtering on secret shared data

less to hide \implies (potentially) cheaper

private classifier

ML classification as service

usually only **weights** are private black-box reconstruction of weights!

vs. public classifier

e.g., spam filtering on secret shared data

less to hide \implies (potentially) cheaper

In this work: both

RHE

- secret-sharing
- + low communication + low communication
- high computation

+ low round complexity

- low-depth only

- high round complexity

- + good for boolean
- bad for arithmetic

+ low round complexity

garbled circuits

FHE

- + low communication
- + low round complexity
- high computation
- low-depth only

secret-sharing

- + low communication
- high round complexity

garbled circuits

- + low round complexity
- + good for boolean
- bad for arithmetic

conventional wisdom:

NN are mostly arithmetic operations \implies GC is a bad fit

outline of this work

Garbling scheme of Ball-Malkin-Rosulek-2016

- very efficient for arithmetic operations
- inefficient for comparisons, etc

outline of this work

Garbling scheme of Ball-Malkin-Rosulek-2016

- very efficient for arithmetic operations
- inefficient for comparisons, etc

Į

Improvements to BMR16 garbling techniques

- targeting common NN activation functions
- approximate activations ⇒ accuracy-efficiency tradeoff

Implementation @ github.com/GaloisInc/fancy-garbling

TensorFlow model support

XONN

ours

Sadegh Riazi, Samragh, Chen, Laine, Lauter, Koushanfar

garbled circuit NN evaluation garbled circuit NN evaluation

binarized NN : $\{0, 1\}$ signals discretized NN : $\{0, ..., N\}$ signals

requires retraining can discretize existing NN

comparable performance comparable performance

future work \implies combine techniques, retrain NN with smaller discretization

circuit model for Ball-Malkin-Rosulek-16 garbling

free addition:

free to garble
(⇒ free multiplication by constant)

circuit model for Ball-Malkin-Rosulek-16 garbling

free addition:

free to garble $(\Rightarrow$ free multiplication by constant)

unary/projection gates:

arbitrary $\varphi : \mathbb{Z}_p \to \mathbb{Z}_q$ cost to garble: p-1 ciphertexts (moduli should remain small)

circuit model for Ball-Malkin-Rosulek-16 garbling

free addition:

 $(\Rightarrow \text{free to garble}$ (\$\Rightarrow\$ free multiplication by constant)

unary/projection gates:

arbitrary $\varphi: \mathbb{Z}_p \to \mathbb{Z}_q$ cost to garble: p-1 ciphertexts (moduli should remain small)

[BMR16] construct multiplication, high-fan-in boolean, etc from these building blocks

residue representation:

$$[x]_{crt} = (x \mod p_1, x \mod p_2, \dots x \mod p_k)$$

addition mod $\prod_i p_i$: free \checkmark multiplication mod $\prod_i p_i$: cheap: $O(\sum_i p_i)$ \checkmark

other things (comparisons, etc): expensive

residue representation:

$$[x]_{crt} = (x \mod p_1, x \mod p_2, \dots x \mod p_k)$$

linear combination, public weights: free \checkmark linear combination, private weights: cheap: $O(\sum_i p_i)$ \checkmark activation function, max-pooling, etc: expensive

 $relu(x) = x \cdot sign(x) \longrightarrow max(x, y) = x + relu(y - x)$

x is in residue representation

$$\llbracket x \rrbracket_{\text{crt}} = \underbrace{\left(x \bmod p_1, \dots, \underbrace{x \bmod p_k}\right)}_{x_1}; P = \prod_i p_i \qquad \text{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$\llbracket x \rrbracket_{\text{crt}} = \underbrace{\left(x \bmod p_1, \dots, \underbrace{x \bmod p_k}\right)}; P = \prod_i p_i \qquad \text{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$x \equiv \sum_{i} \alpha_{i} x_{i} \pmod{P}$$

$$\llbracket x \rrbracket_{\text{crt}} = \left(\underbrace{x \bmod p_1}_{x_1}, \dots, \underbrace{x \bmod p_k}_{x_k} \right); P = \prod_i p_i \quad \text{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$x \equiv \sum_{i} \alpha_{i} x_{i} \pmod{P}$$

$$\Rightarrow x = \sum_{i} \alpha_{i} x_{i} + qP_{\text{(over }\mathbb{Z})}$$

$$\llbracket x \rrbracket_{\text{crt}} = \left(\underbrace{x \bmod p_1}_{x_1}, \dots, \underbrace{x \bmod p_k}_{x_k} \right); P = \prod_i p_i \quad \text{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$x \equiv \sum_{i} \alpha_{i} x_{i} \pmod{P}$$

$$\Rightarrow x = \sum_{i} \alpha_{i} x_{i} + qP \pmod{\mathbb{Z}}$$

$$\Rightarrow x = \sum_{i} \alpha_{i} x_{i} + q P \text{ (over)}$$

$$\Rightarrow \frac{x}{D} = \sum_{i} \frac{\alpha_{i} x_{i}}{D} + q$$

$$\Rightarrow x = \sum_{i} \alpha_{i} x_{i} + qP \text{ (over)}$$

$$\Rightarrow \frac{x}{P} = \sum_{i} \frac{\alpha_{i} x_{i}}{P} + q$$

$$\llbracket x \rrbracket_{\operatorname{crt}} = (\underbrace{x \bmod p_1}_{x_1}, \dots, \underbrace{x \bmod p_k}_{x_k}); P = \prod_i p_i \qquad \operatorname{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$x \equiv \sum_{i} \alpha_{i} x_{i} \pmod{P}$$

$$\Rightarrow x = \sum_{i} \alpha_{i} x_{i} + qP \pmod{\mathbb{Z}}$$

$$\Rightarrow x = \sum_{i} \alpha_{i} x_{i} + qP \text{ (over } \mathbb{Z})$$

$$\Rightarrow \frac{x}{P} = \sum_{i} \frac{\alpha_{i} x_{i}}{P} + q$$

$$\Rightarrow \left[\frac{x}{P}\right]_{1} = \left[\sum_{i} \frac{\alpha_{i} x_{i}}{P}\right]_{1}$$

$$x \equiv \sum_{i} \alpha_{i} x_{i} \pmod{P}$$

 $\llbracket x \rrbracket_{\text{crt}} = \left(\underbrace{x \bmod p_1}_{x_1}, \dots, \underbrace{x \bmod p_k}_{x_k}\right); P = \prod_i p_i \quad \text{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$

our approach:

approximate fractions inside
$$\sum$$

$$\Rightarrow x = \sum_i \alpha_i x_i + qP$$
 (over \mathbb{Z})

$$\Rightarrow \frac{x}{P} = \sum_{i} \frac{\alpha_{i} x_{i}}{P} + q$$

add fractions (ignore integer part)

$$\Rightarrow \left[\frac{x}{P}\right]_1 = \left[\sum_i \frac{\alpha_i x_i}{P}\right]_1$$

check whether result > 1/2

$$sign = 1 \Leftrightarrow \left[\sum_{i} \frac{\alpha_{i} x_{i}}{P}\right]_{1} > \frac{1}{2}$$

$$\llbracket x \rrbracket_{\operatorname{crt}} = \left(\underbrace{x \bmod p_1}_{x_1}, \dots, \underbrace{x \bmod p_k}_{x_k} \right); P = \prod_i p_i \quad \operatorname{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$sign(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$x \equiv \sum_{i} \alpha_i x_i \pmod{P}$$

$$\Rightarrow x = \sum_i \alpha_i x_i + qP$$
 (over \mathbb{Z})

$$\Rightarrow \frac{x}{P} = \sum_{i} \frac{\alpha_{i} x_{i}}{P} + q$$

$$\Rightarrow \left[\frac{x}{P}\right]_1 = \left[\sum_i \frac{\alpha_i x_i}{P}\right]_1$$

our approach:

approximate fractions inside \sum ★ e.g., 10-bit binary

★ (non-free) binary adder circuit

check whether result > 1/2 \star most significant bit of Σ

$$\frac{1}{2}$$

$$sign = 1 \Leftrightarrow \left[\sum_{i} \frac{\alpha_{i} x_{i}}{P}\right]_{1} > \frac{1}{2}$$

$$\llbracket x \rrbracket_{\operatorname{crt}} = (\underbrace{x \bmod p_1}, \dots, \underbrace{x \bmod p_k}); P = \prod_i p_i \quad \operatorname{sign}(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$gn(x) = \begin{cases} 1 & x > P/2 \\ 0 & x \le P/2 \end{cases}$$

$$x \equiv \sum_{i} \alpha_{i} x_{i} \pmod{P}$$

$$\Rightarrow x = \sum_i \alpha_i x_i + qP$$
 (over \mathbb{Z})

$$\Rightarrow \frac{x}{P} = \sum_{i} \frac{\alpha_{i} x_{i}}{P} + q$$

$$\Rightarrow \left[\frac{x}{P}\right]_1 = \left[\sum_i \frac{\alpha_i x_i}{P}\right]_1$$

 x_1

$$sign = 1 \Leftrightarrow \left[\sum_{i} \frac{\alpha_{i} x_{i}}{P}\right]_{1} > \frac{1}{2}$$

our approach:

approximate fractions inside \sum ★ e.g., 10-bit binary

add fractions (ignore integer part)

★ (non-free) binary adder circuit

check whether result > 1/2 \star most significant bit of Σ

choice of "fixed-pt resolution" affects cost & accuracy

# primes	$\prod_i p_i$	fixed-point resolution	correct	cost
		$108360 = 86 \cdot 7 \cdot 6^2 \cdot 5$	= 100%	637
7	219.0	$10560 = 88 \cdot 6 \cdot 5 \cdot 4$	≥ 99.99%	470
/	2	$1200 = 60 \cdot 5 \cdot 4$	≥ 99.9%	315
		$1975680 = 98 \cdot 9 \cdot 8^2 \cdot 7 \cdot 5$	= 100%	1078
		$107100 = 102 \cdot 7 \cdot 6 \cdot 5^2$	≥ 99.999%	770
8	$2^{23.2}$	$10920 = 78 \cdot 7 \cdot 5 \cdot 4$	≥ 99.99%	574
		$1170 = 78 \cdot 5 \cdot 3$	≥ 99.9%	385
		$31933300 = 76 \cdot 7^5 \cdot 5^2$	= 100%	1534
		$119700 = 114 \cdot 7 \cdot 6 \cdot 5^2$	≥ 99.999%	933
9	$2^{27.7}$	$12600 = 84 \cdot 6 \cdot 5^2$	≥ 99.99%	696
		$1260 = 140 \cdot 9$	≥ 99.9%	465
		$791920800 = 202 \cdot 11^2 \cdot 6^4 \cdot 5^2$	= 100%	2294
		$128520 = 102 \cdot 7 \cdot 6^2 \cdot 5$	≥ 99.999%	1122
10	$2^{32.6}$	$13440 = 112 \cdot 6 \cdot 5 \cdot 4$	≥ 99.99%	843
		$1330 = 190 \cdot 7$	≥ 99.9%	547

# primes	$\prod_i p_i$	fixed-point resolution	correct	cost
		$108360 = 86 \cdot 7 \cdot 6^2 \cdot 5$	= 100%	637
7	$2^{19.0}$	$10560 = 88 \cdot 6 \cdot 5 \cdot 4$	≥ 99.99%	470
7		$1200 = 60 \cdot 5 \cdot 4$	200	\15
		$1975680 = 98 \cdot 9 \cdot 8^2 \cdot 7$	act	8
		107100 = 102	Ow COS	\
8	$2^{23.2}$	10920 33-5		<i>5</i> 14
		- 1 (a) 33	16	385
		arracy	= 100%	1534
	00%	accur	≥ 99.999%	933
00	99%	$64 \cdot 6 \cdot 5^2$	≥ 99.99%	696
99		$1975680 = 98 \cdot 9 \cdot 8^{2} \cdot 7$ $107100 = 102$ 10920 $33-5$ $accuracy$ $0 \cdot 5^{2}$ $1260 = 140 \cdot 9$	≥ 99.9%	465
		$791920800 = 202 \cdot 11^2 \cdot 6^4 \cdot 5^2$	= 100%	2294
		$128520 = 102 \cdot 7 \cdot 6^2 \cdot 5$	≥ 99.999%	1122
10	$2^{32.6}$	$13440 = 112 \cdot 6 \cdot 5 \cdot 4$	≥ 99.99%	843
		$1330 = 190 \cdot 7$	≥ 99.9%	547

MNIST-A (128+128+10 neurons) @ 22-bit discretization

weights

private

private

boolean garbling

ours

time (s)

1.98

>300

comm (MB)

3407

128

accuracy (%)

96.8

96.8

MNIST-A (128+128+10 neurons) @ 22-bit discretization

weights

private

public

private

public

boolean garbling

boolean garbling

ours

ours

time (s)

53

1.98

0.12

>300

comm (MB)

3407

618

128

4.43

accuracy (%)

96.8

96.8

96.8

96.8

ours private 1.98 128 ours public 0.12 4.43 ours (99.99% activation) private 1.98 127 ours (99.99% activation) public 0.10 2.77		-		
ours (99.99% activation) private 1.98 127	ours	private	1.98	128
,	ours	public	0.12	4.43
ours (99.99% activation) public 0.10 2.77	ours (99.99% activation)	private	1.98	127
	ours (99.99% activation)	public	0.10	2.77

weights

private

public

boolean garbling

boolean garbling

time (s)

53

>300

comm (MB)

3407

618

accuracy (%)

96.8

96.8

96.8 96.8

95.7 95.7

	weights	time (s)	comm (MB)	accuracy (%)
boolean garbling	private	>300	3407	96.8
boolean garbling	public	53	618	96.8
ours	private	1.98	128	96.8
ours	public	0.12	4.43	96.8
ours (99.99% activation)	private	1.98	127	95.7
ours (99.99% activation)	public	0.10	2.77	95.7
CommoMI	muirrata	1 00		02.1
SecureML	private	4.88		93.1
MiniONN	private	1.04	47.6	97.6
Gazelle	private	0.03	0.5	
XONN	private	0.13	4.29	97.6

MNIST-A (128+128+10 neurons) @ 22-bit discretization

garbled circuits are better than you thought

for arithmetic computations, NNs especially for NNs with public weights

approximate activation functions are great!

ia.cr/2019/338
github.com/GaloisInc/fancy-garbling