garbled neural networks are practical

. . .according to marshall ball
brent carmer

tal malkin

mike rosulek

nichole schimanski

columbia university
galois inc

columbia university
oregon state university

galois inc

PPML @ ACM CCS 2019; Nov 15



private classifier

& X
o _—
Alice ¢——— Bob
—
prediction(x)

ML classification as service

usually only weights are private
black-box reconstruction of weights!



private classifier

X
—
Alice ¢——— Bob
—
prediction(x)

ML classification as service

usually only weights are private
black-box reconstruction of weights!

Vs.

public classifier

Q
A O\%

\ o c\z

S o

R0 5

X %)
O

XA XB
_
Alice ¢«— Bob

[eXeXoXe}

prediction(x4 + xp)

e.g., spam filtering on secret shared data

less to hidle = (potentially) cheaper



private classifier .

Alice «— Bob
—_—

prediction(x)

ML classification as service

usually only weights are private
black-box reconstruction of weights!

public classifier

Q
A
\ %%&Z
= o)
0 A
X 0
o

XA XB
_
Alice ¢«— Bob

[eXeXoXe}

prediction(x4 + xp)

e.g., spam filtering on secret shared data

less to hidle = (potentially) cheaper

In this work: both



FHE

+ low communication

+ low round complexity
— high computation

— low-depth only

secret-sharing

+ low communication
— high round complexity

garbled circuits

+ low round complexity
+ good for boolean
— bad for arithmetic



FHE secret-sharing garbled circuits

+ low communication + low communication + low round complexity
+ low round complexity — high round complexity + good for boolean
— high computation - bad for arithmetic

— low-depth only

conventional wisdom:
NN are mostly arithmetic operations = GC is a bad fit



outline of this work

Garbling scheme of Ball-Malkin-Rosulek-2016
very efficient for arithmetic operations

inefficient for comparisons, etc



outline of this work

Garbling scheme of Ball-Malkin-Rosulek-2016
very efficient for arithmetic operations

inefficient for comparisons, etc

U

Improvements to BMR16 garbling techniques
targeting common NN activation functions
approximate activations = accuracy-efficiency tradeoff
Implementation @ github.com/GaloisInc/fancy-garbling

TensorFlow model support



XONN

Sadegh Riazi, Samragh, Chen, Laine, Lauter, Koushanfar
garbled circuit NN evaluation

binarized NN : {0, 1} signals

requires retraining

comparable performance

ours

garbled circuit NN evaluation
discretized NN : {0, ..., N} signals
can discretize existing NN

comparable performance

future work = combine techniques, retrain NN with smaller discretization



circuit model for Ball-Malkin-Rosulek-16 garbling

free addition:

x mod p
—_ x+ ymod p
.t '

y mod p

free to garble

(= free multiplication by constant)



circuit model for Ball-Malkin-Rosulek-16 garbling

free addition: unary/projection gates:
x mod p x mod x) mod
— x+ y mod p ) p GD ¢(x) q
y mod p

arbitrary ¢ : Z, — Zg
free to garble .
cost to garble: p — 1 ciphertexts

(= free multiplication by constant) (moduli should remain small)



circuit model for Ball-Malkin-Rosulek-16 garbling

free addition: unary/projection gates:
x mod p x mod x) mod
— x+ymodp) p GD ¢(x) q )
y mod p

arbitrary ¢ : Z, — Zg
free to garble .
cost to garble: p — 1 ciphertexts

(= free multiplication by constant) (moduli should remain small)

[BMR16] construct multiplication, high-fan-in boolean, etc from these building blocks



residue representation:

[xllcrt = (x mod p1, x mod po,...x mod pk)

addition mod [[; p;: free
multiplication mod []; p;: cheap: O(}}; p;)

other things (comparisons, etc): expensive



residue representation:

[x]lcrt = (x mod p1, x mod po,...x mod pk)

linear combination, public weights: free
linear combination, private weights: cheap: O(};; p;)

activation function, max-pooling, etc: expensive



relu(x) = x - sign(x)

W

max(x, y) = x + relu(y — x)

x is in residue representation



W

relu(x) = x - sign(x) max(x, y) = x + relu(y — x)

1 x>0 improvements to
mult by bit sign(x) = BMR16 garbling in
S 0 x<0 this work
cross-modulus mult approx sign = ap-
r\ prox relu + approx
max
generalized half-gates mixed-radix addition

x is in residue representation



[x]crt = (x mod py, . .

N———
X1

.,x mod pk)
———
Xk

sign(x) = {

1
0

x>0

x<0




[x]crt = (x mod py, . .

N———
X1

.,xmodpk);P: [1;pi
———
Xk

sign(x) = {

1
0

x> P/2
x < P/2




[xTere = (x mod pP1, - .., x mod Pk); P = Hipi
——— SN———
X1 Xk

x = ); aix; (mod P)

sign(x) = {

1
0

x> P/2
x < P/2




1

[x]crt = (x mod py, ..., x mod pk); P=11,p:i |sign(x) = {0

—

x> P/2
x < P/2

X1 Xk

x = );aix; (mod P)
—a— Zlalxl + qP (over Z)




[x]crt = (x mod py, . .

N———
X1

.,xmodpk);P: [1;pi
———
Xk

x = );aix; (mod P)
—a— Zlalxl + qP (over Z)
a;X;

= 5=Xip tq

sign(x) = {

1
0

x> P/2
x < P/2




1 x>P/2
0 x<P/2

[x]crt = (x mod py, . .., x mod pk); P=11,p:i |sign(x) = {

—

X1 Xk

x = );aix; (mod P)
X = ) aiXi + qP ©over2)
x _ Zlanl +q

| = (251,

mllll



1 x>P/2

[xlert = (x mod py, ..., x mod pk); P=1T],pi | sign(x) = {0 x <P/

S—— S———
X1 Xk

x = );aix; (mod P)
—a— Zlalxl + qP (over Z)

our approach:

approximate fractions inside },

— % — Zl % 4 q add fractions (ignore integer part)
x] — a ixi]
= [P] 1 [Z I P 11 check whether result > 1/2

sigh =1 & [Zi%]l > 2



1

[x]crt = (x mod py, ..., x mod pk); P=11,p:i |sign(x) = {0

—

x> P/2
x < P/2

X1 Xk

our approach:

x = );aix; (mod P)
approximate fractions inside },
= X = Zl AiXj + qP (overZ)  * €.g. 10-bit binary
— X — Z ) &iX; 4 q add fractions (ignore integer part)
P I P * (non-free) binary adder circuit
x] — a ixi]
= [P] 1 [Zl P 11 check whether result > 1/2

* most significant bit of )]

sigh =1 & [Zi%]l > 2



1 x>P/2

[xlert = (x mod py, ..., x mod pk); P=1T],pi | sign(x) = {0 x <P/

S—— S———
X1 Xk

= ),;aix; (mod P)

our approach:

approximate fractions inside },

X
— Zi a;ix; + qP (overZ)  * e.g, 10-bit binary
— % — Zl % 4 q add fractions (ignore integer.parlt)
o, * (non-free) binary adder circuit
= [%] 1 — [Zl IT] 1 check whether result > 1/2

* most significant bit of )]

. X
Slgn =1 [Zl %] 1 > % choice of “fixed-pt resolution”

affects cost & accuracy



# primes [[; p; fixed-point resolution correct cost
108360 = 86 -7 -6° -5 =100% 637

; 919.0 10560 = 88 -6 -5 - 4 > 99.99% 470
1200=60-5-4 > 99.9% 315

1975680 =98-9-8%-7-5  =100% 1078

107100 = 102 - 7 - 6 - 52 > 99.999% 770

8 2232 10920=78-7-5-4 > 99.99% 574
1170=78-5-3 > 99.9% 385

31933300 = 76 - 7° - 52 =100% 1534

119700 = 114 -7 - 6 - 52 > 99.999% 933

9 2277 12600 = 84 - 6 - 52 > 99.99% 696
1260 = 140 - 9 > 99.9% 465

791920800 = 202 - 11% - 6* - 52 =100% 2294

128520 = 102-7 - 6% -5 > 99.999% 1122

10 232:6 13440 =112-6-5-4 > 99.99% 843
1330 = 190 - 7 > 99.9% 547



# primes [[; p; fixed-point resolution correct cost
108360 = 86 -7 -6° -5 =100% 637
; 919.0 10560 = 88 -6 -5 - 4 > 99.99%
1200=60-5-4
1975680 = 98 - 9 - 82 -
107100 = 10
8 223.2
1534
07 acc‘){ > 99.999% 933
99 99 0 >99.99% 696
260 = 140 - 9 > 99.9% 465
791920800 = 202 - 11% - 6* - 52 =100% 2294
128520 = 102-7 - 6% -5 > 99.999% 1122
10 232:6 13440 =112-6-5-4 > 99.99% 843
1330 = 190 - 7 > 99.9% 547



weights‘ time (s) comm (MB) accuracy (%)

boolean garbling private ‘ >300 3407 96.8

ours private ‘ 1.98 128 96.8

MNIST-A (128+128+10 neurons) @ 22-bit discretization



weights | time (s) comm (MB) accuracy (%)
boolean garbling private | >300 3407 96.8
boolean garbling public 53 618 96.8
ours private 1.98 128 96.8
ours public 0.12 4.43 96.8

MNIST-A (128+128+10 neurons) @ 22-bit discretization



weights | time (s) comm (MB) accuracy (%)
boolean garbling private | >300 3407 96.8
boolean garbling public 53 618 96.8
ours private 1.98 128 96.8
ours public 0.12 4.43 96.8
ours (99.99% activation) private 1.98 127 95.7
ours (99.99% activation) public 0.10 2.77 95.7

MNIST-A (128+128+10 neurons) @ 22-bit discretization



weights | time (s) comm (MB) accuracy (%)
boolean garbling private | >300 3407 96.8
boolean garbling public 53 618 96.8
ours private 1.98 128 96.8
ours public 0.12 4.43 96.8
ours (99.99% activation) private 1.98 127 95.7
ours (99.99% activation) public 0.10 2.77 95.7
SecureML private 4.88 - 93.1
MiniONN private 1.04 47.6 97.6
Gazelle private 0.03 0.5 -
XONN private 0.13 4.29 97.6

MNIST-A (128+128+10 neurons) @ 22-bit discretization



garbled circuits are better than you thought
for arithmetic computations, NNs
... especially for NNs with public weights

approximate activation functions are great!

ia.cr/2019/338
github.com/GaloisInc/fancy-garbling



