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Private set intersection (PSI)

Special case of secure 2-party computation:

X = {x1, x2, . . .} Y = {y1, y2, . . .}

PSI
X Y

X ∩ Y
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PSI applications
Contact discovery, when signing up for WhatsApp
▶ X = address book in my phone (phone numbers)
▶ Y = WhatsApp user database

Private scheduling
▶ X = available timeslots on my calendar
▶ Y = available timeslots on your calendar

Ad conversion rate (PSI variant)
▶ X = users who saw the advertisement
▶ Y = customers who bought the product

No-fly list
▶ X = passenger list of flight 123
▶ Y = government no-fly list
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“Obvious” protocol

x1, x2, . . . y1, y2, . . .
H(x1),H(x2), . . .

compare: H(y1), . . .

I wonder if she had item v

INSECURE: Receiver can test any v
?∈ {x1, . . . , xn}, offline

▶ Problematic if items have low entropy (e.g., phone numbers)
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Classical protocol [Meadows86,HubermanFranklinHogg99]

x y

H(x)α

H(y)β ;H(x)α β

check: H(x)α β ?
= H(y)βα

H(x1)α ,H(x2)α , . . .

H(y1)β ,H(x2)β , . . .

H(x1)α β ,H(x2)α β , . . .

special case: each party has just one item

Idea:
▶ If x = y, then H(x)α β = H(y)βα

▶ If x , y, they are independently random (when H is random oracle)

Drawback: O(n) expensive exponentiations
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Roadmap

1
Crypto: Private equality tests:
▶ How to securely test whether two strings are identical
▶ Focus on building from OT (and similar primitives) in light

of OT extension

2 Algorithmic: Hashing techniques
▶ How to reduce number of equality tests
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Simplest case: string equality

x y

does x = y?

Using Yao’s protocol: (x, y ∈ {0, 1}ℓ)
▶ ℓ OTs
▶ Boolean circuit with ℓ − 1 AND gates
▶ E.g.: ℓ = 64⇒ 48 Kbits
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String equality from OT

x y

OT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·
m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

▶ Sender chooses 2ℓ random strings

▶ Receiver uses bits of y as OT choice bits
▶ Summary value of v defined as

⊕
i mi,vi

▶ Sender can compute any summary value (in particular, for x)
▶ Receiver can compute summary value only for y
▶ Summary values other than y look random to receiver

Cost: just ℓ OTs
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Improving equality tests [PinkasSchneiderZohner14]

x yOT(×ℓ)

m1,2 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1 m1,2

m2,0 m2,1 m2,2

m3,0 m3,1 m3,2

m4,0 m4,1 m4,3

...
...

...

x = 2101 · · ·
m1,0 ? ?
? m2,1 ?
? ? m3,2

? ? m4,2

...
...

...

y = 0122 · · ·

Idea: Instead of binary inputs, use base-k (base 3 in this example)
▶ Now only logk ℓ instances of 1-out-of-k OT

▶ Note: Only random OT required

Costs for different 1-out-of-k random OTs:
▶ Basic OT extension: k = 2: 128 bits/OT
▶ [KolesnikovKumaresan13]: k = 28⇒ 3× fewer OTs @ 256 bits/OT
▶ [OrruOrsiniScholl16]: k = 276⇒ 76× fewer OTs @ 512 bits/OT
▶ [KolesnikovKumaresanRosulekTrieu16]: k = ∞⇒ ∼ 480 bits total
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Another generalization

yOT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

H(m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · · ),
H(m1,1 ⊕ m2,1 ⊕ m3,1 ⊕ · · · ),
H(m1,0 ⊕ m2,0 ⊕ m3,1 ⊕ · · · )

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·

x1 = 0101 · · ·
x2 = 1111 · · ·
x3 = 0010 · · ·

m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

Private equality test: Alice has x, Bob has y, Bob learns x ?
= y

Private set membership: Alice has set X, Bob has y, Bob learns y
?∈ X
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Roadmap

1 Crypto: Private equality tests:
▶ How to securely test whether two strings are identical

2 Algorithmic: Hashing techniques
▶ How to reduce number of equality tests
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Building block

S = {s1, . . .} v

PMT
S v

v
?∈ S

Cost: 1 OT primitive + sending n summary values
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Dumb solution

X = {x1, . . .} Y = {y1, . . .}PMT
X y1

PMT
X y2

PMT
X y3

...

Cost: O(n2)
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Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)
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Subtleties with hashing

“cost =
∑

i O(aibi)” ⁇
▶ only if ai, bi public

x1

x2, x4

x3

x5

x6

1 item

2 items

1 item

1 item

1 item she has no x
with h(x) = 3

3 items

3 items

3 items

3 items

3 items

3 items

3 items

3 items

Solution:
1. Compute B such that Prh[no bin has > B items] ≤ 2−s (balls in bins)

2. Add dummy items so that each bin has exactly B items

⇒ # (apparent) items per bin does not depend on input.
▶ (Protocol fails with probability 2−s)

.
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Balls & bins questions

n balls
randomly assign
{ m bins

▶ Expected # balls per bin is n/m
▶ What is the worst case # balls in a bin (with high probability)?

Natural parameter choice: n items, n bins
▶ Expected balls per bin = 1
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = (# bins) × (worst-case load)2 = O(n log2 n)

Better parameter choice: n items, O(n/ log n) bins [good to know!]
▶ Expected balls per bin = O(log n)
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = O(n log n)
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Improved hashing

Remember:

S = {s1, . . .} v

PMT
S v

v
?∈ S

Our basic building block naturally supports one item from Bob

Idea: find hashing scheme that leaves only 1 item per bin
▶ Only Bob needs to have 1 item per bin
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Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2
y1

y2

y2

y3
y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability
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Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h1, h2

Bob hashes with Cuckoo
hashing

What about Alice?

▶ Place x in both h1(x)
and h2(x)

PMT in each bin
← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x1 x1

x1

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

y1

y2

y3

y4

y5

y6

Idea: Only Bob gets output from PMT
▶ He places y in h?(y); if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in h1(y) or h2(y)
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Cuckoo hashing PSI details

Don’t forget: Alice
should pad with dummy
items! (2n balls in m bins)

▶ Bob too!

Cost:
▶ ∼ 1.5n bins for

Cuckoo
▶ At most O(log n)

items per bin for
Alice

⇒ Still O(n log n) cost!
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Avoiding dummy items

Summary values can be sent
all together

▶ No longer associated
with bins

Previously:
▶ Can’t leak # true items

in a bin

Now:
▶ Everyone knows: n true

items⇒ 2n true
summary masks

⇒ Send only summary
masks of true items

PMT

PMT

PMT

PMT

PMT

PMT

PMT

PMT

ROT

ROT

ROT

ROT
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ROT

ROT
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Cuckoo PSI costs
Other details:
▶ Actually use Cuckoo hashing with 3 hash functions

Costs:
▶ ∼ 1.5n Cuckoo bins
▶ ∼ 1.5n OT primitives
▶ 2n summary masks

⇒ total cost O(n)

Performance: [KolesnikovKumaresanRosulekTrieu16] = most efficient 1-out-of-∞
OT equality test
▶ PSI of 1 million items ⇒ 3.8 seconds @ 120 MB
▶ Insecure protocol (hash and send) ⇒ 0.7 seconds @ 10 MB
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