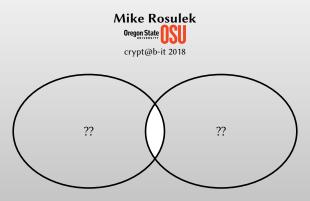
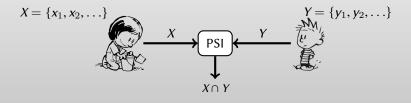
Private Set Intersection



Private set intersection (PSI)

Special case of secure 2-party computation:



Contact discovery, when signing up for WhatsApp

- X = address book in my phone (phone numbers)
- Y = WhatsApp user database

Contact discovery, when signing up for WhatsApp

- X = address book in my phone (phone numbers)
- Y = WhatsApp user database

Private scheduling

- X = available timeslots on my calendar
- Y = available timeslots on your calendar

Contact discovery, when signing up for WhatsApp

- X = address book in my phone (phone numbers)
- Y = WhatsApp user database

Private scheduling

- X = available timeslots on my calendar
- Y = available timeslots on your calendar

Ad conversion rate (PSI variant)

- X = users who saw the advertisement
- Y = customers who bought the product

Contact discovery, when signing up for WhatsApp

- X = address book in my phone (phone numbers)
- Y = WhatsApp user database

Private scheduling

- X = available timeslots on my calendar
- Y = available timeslots on your calendar

Ad conversion rate (PSI variant)

- X = users who saw the advertisement
- Y = customers who bought the product

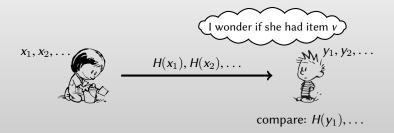
No-fly list

- X = passenger list of flight 123
- Y = government no-fly list

"Obvious" protocol

WM V1, Y2,... $H(x_1), H(x_2), \ldots$ x_1, x_2, \ldots compare: $H(y_1), \ldots$

"Obvious" protocol

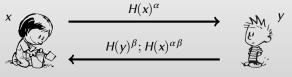


INSECURE: Receiver can test *any* $v \in \{x_1, \ldots, x_n\}$, offline

Problematic if items have low entropy (e.g., phone numbers)

special case: each party has just one item

special case: each party has just one item

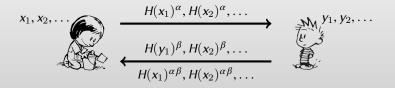


check:
$$H(x)^{\alpha\beta} \stackrel{?}{=} H(y)^{\beta\alpha}$$

Idea:

• If
$$x = y$$
, then $H(x)^{\alpha\beta} = H(y)^{\beta\alpha}$

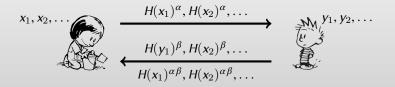
• If $x \neq y$, they are independently random (when *H* is random oracle)



Idea:

• If
$$x = y$$
, then $H(x)^{\alpha\beta} = H(y)^{\beta\alpha}$

• If $x \neq y$, they are independently random (when *H* is random oracle)



Idea:

• If
$$x = y$$
, then $H(x)^{\alpha\beta} = H(y)^{\beta\alpha}$

▶ If $x \neq y$, they are independently random (when *H* is random oracle)

Drawback: O(n) **expensive** exponentiations

Roadmap

Crypto: Private equality tests:

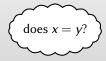
- How to securely test whether two strings are identical
- Focus on building from OT (and similar primitives) in light of OT extension

2

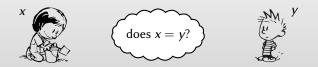
Algorithmic: Hashing techniques

How to reduce number of equality tests

Simplest case: string equality

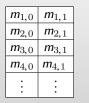


Simplest case: string equality

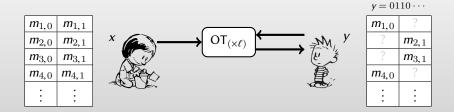


Using Yao's protocol: $(x, y \in \{0, 1\}^{\ell})$

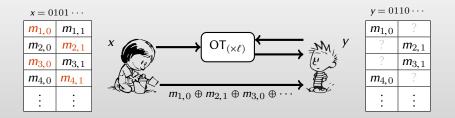
- ► ℓ OTs
- ▶ Boolean circuit with $\ell 1$ AND gates
- E.g.: $\ell = 64 \Rightarrow 48$ Kbits



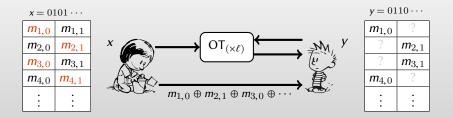
• Sender chooses 2ℓ random strings



- Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits



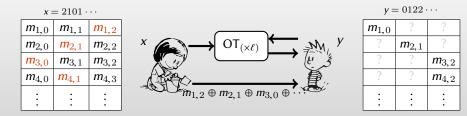
- Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits
- Summary value of v defined as $\bigoplus_i m_{i, v_i}$
 - Sender can compute any summary value (in particular, for x)
 - Receiver can compute summary value only for y
 - Summary values other than y look random to receiver



- Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits
- Summary value of v defined as $\bigoplus_i m_{i, v_i}$
 - Sender can compute any summary value (in particular, for x)
 - Receiver can compute summary value only for y
 - Summary values other than y look random to receiver

Cost: just ℓ OTs

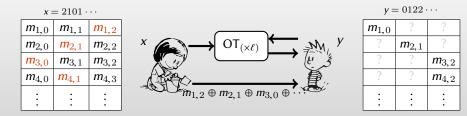
Improving equality tests [PinkasSchneiderZohner14]



Idea: Instead of binary inputs, use **base**-*k* (base 3 in this example)

• Now only $\log_k \ell$ instances of 1-out-of-*k* OT

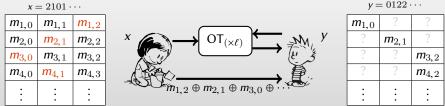
Improving equality tests [PinkasSchneiderZohner14]



Idea: Instead of binary inputs, use **base**-*k* (base 3 in this example)

- Now only $\log_k \ell$ instances of 1-out-of-k OT
- Note: Only random OT required

Improving equality tests [PinkasSchneiderZohner14]



Idea: Instead of binary inputs, use **base**-k (base 3 in this example)

- Now only $\log_{\ell} \ell$ instances of 1-out-of-*k* OT
- Note: Only random OT required

Costs for different 1-out-of-*k* random OTs:

- Basic OT extension: k = 2:
- ▶ [KolesnikovKumaresan13]: $k = 2^8 \Rightarrow$
- [OrruOrsiniScholl16]: $k = 2^{76} \Rightarrow$

▶ [KolesnikovKumaresanRosulekTrieu16]: $k = \infty \Rightarrow$

 $v = 0122 \cdots$

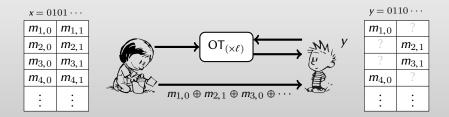
128 bits/OT

3× fewer OTs @ 256 bits/OT

76× fewer OTs @ 512 bits/OT

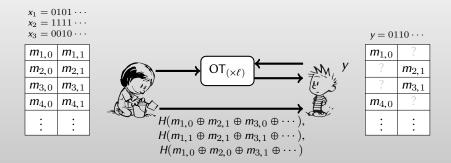
 ~ 480 bits total

Another generalization



Private equality test: Alice has *x*, Bob has *y*, Bob learns $x \stackrel{?}{=} y$

Another generalization



Private equality test: Alice has *x*, Bob has *y*, Bob learns $x \stackrel{?}{=} y$

Private set membership: Alice has set *X*, Bob has *y*, Bob learns $y \in X$

Roadmap

12

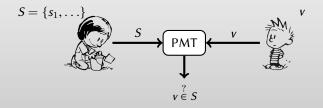
Crypto: Private equality tests:

How to securely test whether two strings are identical

Algorithmic: Hashing techniques

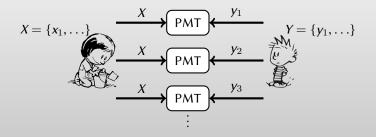
How to reduce number of equality tests

Building block

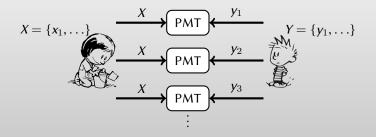


Cost: 1 OT primitive + sending *n* summary values

Dumb solution

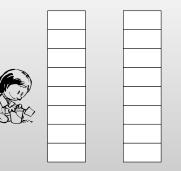


Dumb solution

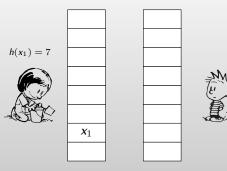


Cost: $O(n^2)$

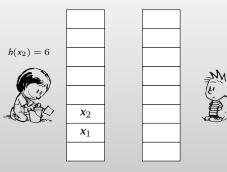
Agree on a random hash function $h: \{0, 1\}^* \rightarrow [m]$



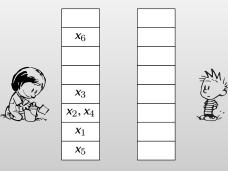
Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$



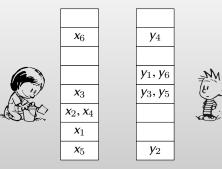
Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$



Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$



Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$

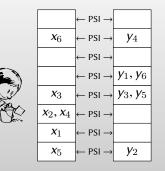


Agree on a random hash function $h: \{0, 1\}^* \rightarrow [m]$

Assign item *v* to bin # h(v)

 $\operatorname{Do}\Theta(\mathit{n}^2)$ PSI in each bin

Idea: if both parties share an item v, **both** will put it in bin h(v)



Agree on a random hash function $h: \{0, 1\}^* \rightarrow [m]$

Assign item *v* to bin # h(v)

Do $\Theta(n^2)$ PSI in each bin

Idea: if both parties share an item v, both will put it in bin h(v)

 \leftarrow PSI \rightarrow X_6 \leftarrow PSI \rightarrow \leftarrow PSI \rightarrow \leftarrow PSI \rightarrow y_1, y_6 \leftarrow PSI \rightarrow Y_3, Y_5 X_3 $x_2, x_4 \leftarrow \text{PSI} \rightarrow$ X_1 \leftarrow PSI \rightarrow \leftarrow PSI \rightarrow X_5

 y_4

 y_2

Cost: $\sum_{i} O(a_i b_i)$ where a_i, b_i = number of items in bin #*i*

• With *n* items into *n* bins, E[cost] = O(n) !

Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$

Assign item *v* to bin # h(v)

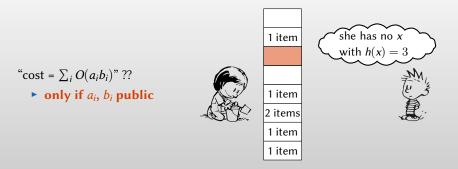
 $\operatorname{Do}\Theta(\mathit{n}^2)$ PSI in each bin

Idea: if both parties share an item v, **both** will put it in bin h(v) $\begin{array}{c} \leftarrow \mathsf{PSI} \rightarrow \\ \hline X_6 \leftarrow \mathsf{PSI} \rightarrow \\ \hline Y_4 \\ \leftarrow \mathsf{PSI} \rightarrow \\ \hline \\ \hline \\ X_7 \\ \hline \\ X_2 \\ X_4 \leftarrow \mathsf{PSI} \rightarrow \\ \hline \\ \hline \\ X_2 \\ \hline \\ X_5 \leftarrow \mathsf{PSI} \rightarrow \\ \hline \\ Y_2 \end{array}$

Cost: $\sum_i O(a_i b_i)$ where a_i, b_i = number of items in bin #*i*

• With *n* items into *n* bins, $E[\cos t] = O(n)$!

Except, this is **completely insecure!** (why?)



$$cost = \sum_{i} O(a_{i}b_{i})^{"} ??$$
• only if a_{i} , b_{i} public

3 items

Solution:

- 1. Compute *B* such that $Pr_h[no bin has > B items] \le 2^{-s}$ (balls in bins)
- 2. Add dummy items so that each bin has exactly B items
- \Rightarrow # (apparent) items per bin does not depend on input.
 - (Protocol fails with probability 2^{-s})

Balls & bins questions

$n \text{ balls} \xrightarrow{randomly assign} m \text{ bins}$

- Expected # balls per bin is n/m
- What is the worst case # balls in a bin (with high probability)?

Balls & bins questions

$n \text{ balls} \overset{randomly assign}{\sim} m \text{ bins}$

- Expected # balls per bin is n/m
- What is the worst case # balls in a bin (with high probability)?

Natural parameter choice: n items, n bins

- Expected balls per bin = 1
- Worst-case balls per bin = O(log n)
- ▶ PSI cost = (# bins) × (worst-case load)² = $O(n \log^2 n)$

Balls & bins questions

$n \text{ balls} \overset{randomly assign}{\sim} m \text{ bins}$

- Expected # balls per bin is n/m
- What is the worst case # balls in a bin (with high probability)?

Natural parameter choice: n items, n bins

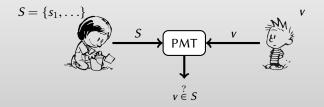
- Expected balls per bin = 1
- Worst-case balls per bin = O(log n)
- ▶ PSI cost = (# bins) × (worst-case load)² = $O(n \log^2 n)$

Better parameter choice: *n* items, $O(n/\log n)$ bins [good to know!]

- Expected balls per bin = O(log n)
- Worst-case balls per bin = O(log n)
- PSI cost = $O(n \log n)$

Improved hashing

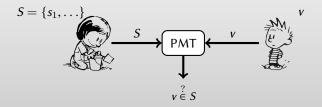
Remember:



Our basic building block naturally supports one item from Bob

Improved hashing

Remember:



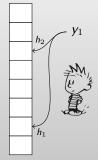
Our basic building block naturally supports one item from Bob

Idea: find hashing scheme that leaves only 1 item per binOnly Bob needs to have 1 item per bin

Use **2** random hash functions h_1, h_2

Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

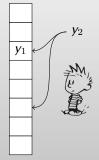


Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

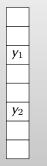
Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,



Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

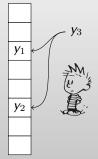


Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

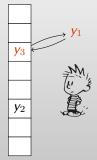


Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

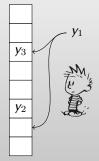


Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,



Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

Use **2** random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

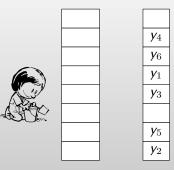
put y in that bin

If h₁(y) and h₂(y) both occupied,
evict someone y' and recurse on y'

Claim: with sufficient bins, this process terminates with high probability

Agree on h_1, h_2

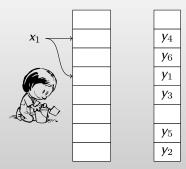
Bob hashes with Cuckoo hashing



Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

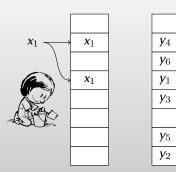


Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place x in both h₁(x) and h₂(x)

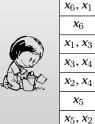


Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place *x* in **both** $h_1(x)$ and $h_2(x)$



 X_6

 X_5

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place x in both h₁(x) and h₂(x)

	$\leftarrow PMT \rightarrow$	
x_6, x_1	\leftarrow PMT \rightarrow	y 4
x ₆	\leftarrow PMT \rightarrow	y 6
x_1, x_3	\leftarrow PMT \rightarrow	y 1
x_3, x_4	\leftarrow PMT \rightarrow	y 3
x_2, x_4	\leftarrow PMT \rightarrow	
x 5	\leftarrow PMT \rightarrow	y 5
x_5, x_2	$\leftarrow PMT \rightarrow$	y ₂

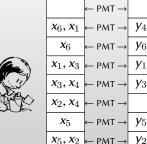
PMT in each bin

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place x in both h₁(x) and h₂(x)



PMT in each bin

Idea: Only Bob gets output from PMT

• He places y in $h_{?}(y)$; if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed *y* in $h_1(y)$ or $h_2(y)$

Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

	\leftarrow PMT \rightarrow	
x_6, x_1	\leftarrow PMT \rightarrow	y ₄
<i>x</i> ₆	\leftarrow PMT \rightarrow	y 6
x_1, x_3	\leftarrow PMT \rightarrow	y ₁
x_3, x_4	\leftarrow PMT \rightarrow	y 3
x_2, x_4	\leftarrow PMT \rightarrow	
x 5	\leftarrow PMT \rightarrow	y_5
x_5, x_2	$\leftarrow PMT \rightarrow$	y ₂

Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

\bot, \bot	\leftarrow PMT \rightarrow	
x_6, x_1	\leftarrow PMT \rightarrow	y 4
x_6, \perp	\leftarrow PMT \rightarrow	y 6
x_1, x_3	\leftarrow PMT \rightarrow	y 1
x_3, x_4	\leftarrow PMT \rightarrow	y 3
x_2, x_4	\leftarrow PMT \rightarrow	
x_5, \perp	$\leftarrow PMT \rightarrow$	y 5
x_5, x_2	$\leftarrow PMT \rightarrow$	y ₂

Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

Bob too!

	,	
\perp, \perp	\leftarrow PMT \rightarrow	⊥′
x_6, x_1	$\leftarrow PMT \rightarrow$	y 4
x_6, \perp	\leftarrow PMT \rightarrow	y 6
x_1, x_3	\leftarrow PMT \rightarrow	y ₁
x_3, x_4	\leftarrow PMT \rightarrow	y 3
x_2, x_4	\leftarrow PMT \rightarrow	⊥′
x_5, \perp	$\leftarrow PMT \rightarrow$	y 5
x_5, x_2	$\leftarrow PMT \rightarrow$	y ₂

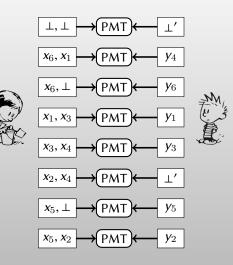
Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

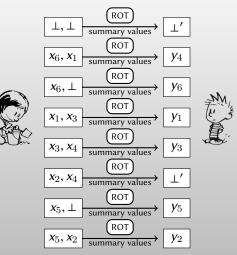
Bob too!

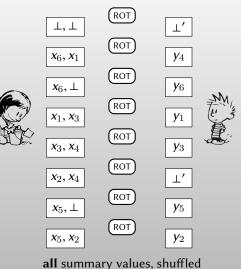
Cost:

- ~ 1.5n bins for Cuckoo
- At most O(log n) items per bin for Alice
- \Rightarrow Still $O(n \log n) \operatorname{cost!}$

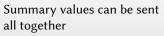
\bot, \bot	\leftarrow PMT \rightarrow	⊥′
x_6, x_1	\leftarrow PMT \rightarrow	y 4
x_6, \perp	\leftarrow PMT \rightarrow	y 6
x_1, x_3	\leftarrow PMT \rightarrow	y 1
x_3, x_4	\leftarrow PMT \rightarrow	y ₃
x_2, x_4	\leftarrow PMT \rightarrow	⊥′
x_5, \perp	$\leftarrow PMT \rightarrow$	y 5
x_5, x_2	$\leftarrow PMT \rightarrow$	y ₂







Summary values can be sent all together



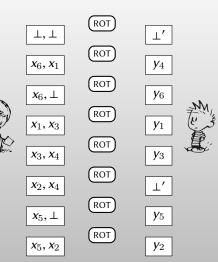
 No longer associated with bins

Previously:

Can't leak # true items in a bin

Now:

- ► Everyone knows: *n* true items ⇒ 2*n* true summary masks
- ⇒ Send only summary masks of true items



all summary values, shuffled

Cuckoo PSI costs

Other details:

Actually use Cuckoo hashing with 3 hash functions

Costs:

- ▶ ~ 1.5*n* Cuckoo bins
- ~ 1.5n OT primitives
- 2n summary masks
- \Rightarrow total cost O(n)

Performance: [KolesnikovKumaresanRosulekTrieu16] = most efficient 1-out-of-∞ OT equality test

- ► PSI of 1 million items \Rightarrow **3.8 seconds** @ 120 MB
- Insecure protocol (hash and send)

 \Rightarrow 0.7 seconds @ 10 MB