Private Set Intersection

Mike Rosulek
Oregon State
-
crypt@b-it 2018

Private set intersection (PSI)

Special case of secure 2-party computation:

PSI applications

Contact discovery, when signing up for WhatsApp

- $X=$ address book in my phone (phone numbers)
- $Y=$ WhatsApp user database

PSI applications

Contact discovery, when signing up for WhatsApp

- $X=$ address book in my phone (phone numbers)
- $Y=$ WhatsApp user database

Private scheduling

- $X=$ available timeslots on my calendar
- $Y=$ available timeslots on your calendar

PSI applications

Contact discovery, when signing up for WhatsApp

- $X=$ address book in my phone (phone numbers)
- $Y=$ WhatsApp user database

Private scheduling

- $X=$ available timeslots on my calendar
- $Y=$ available timeslots on your calendar

Ad conversion rate (PSI variant)

- $X=$ users who saw the advertisement
- $Y=$ customers who bought the product

PSI applications

Contact discovery, when signing up for WhatsApp

- $X=$ address book in my phone (phone numbers)
- $Y=$ WhatsApp user database

Private scheduling

- $X=$ available timeslots on my calendar
- $Y=$ available timeslots on your calendar

Ad conversion rate (PSI variant)

- $X=$ users who saw the advertisement
- $Y=$ customers who bought the product

No-fly list

- $X=$ passenger list of flight 123
- $Y=$ government no-fly list

"Obvious" protocol

"Obvious" protocol

INSECURE: Receiver can test any $v \stackrel{?}{\in}\left\{x_{1}, \ldots, x_{n}\right\}$, offline

- Problematic if items have low entropy (e.g., phone numbers)

①assical protocol [Meadows86,HubermanFranklinHogg99]

special case: each party has just one item

Classical protocol

special case: each party has just one item

check: $H(x)^{\alpha \beta} \stackrel{?}{=} H(y)^{\beta \alpha}$

Idea:

- If $x=y$, then $H(x)^{\alpha \beta}=H(y)^{\beta \alpha}$
- If $x \neq y$, they are independently random (when H is random oracle)

Classical protocol

Idea:

- If $x=y$, then $H(x)^{\alpha \beta}=H(y)^{\beta \alpha}$
- If $x \neq y$, they are independently random (when H is random oracle)

Classical protocol

Idea:

- If $x=y$, then $H(x)^{\alpha \beta}=H(y)^{\beta \alpha}$
- If $x \neq y$, they are independently random (when H is random oracle)

Drawback: $O(n)$ expensive exponentiations

Roadmap

Crypto: Private equality tests:

- How to securely test whether two strings are identical
- Focus on building from OT (and similar primitives) in light of OT extension

Algorithmic: Hashing techniques

- How to reduce number of equality tests

Simplest case: string equality

Simplest case: string equality

Using Yao's protocol: $\left(x, y \in\{0,1\}^{\ell}\right)$

- ℓ OTs
- Boolean circuit with $\ell-1$ AND gates
- E.g.: $\ell=64 \Rightarrow 48$ Kbits

String equality from OT

$m_{1,0}$	$m_{1,1}$		
$m_{2,0}$	$m_{2,1}$		
$m_{3,0}$	$m_{3,1}$		
$m_{4,0}$	$m_{4,1}$		
\vdots	\vdots	\quad	
:---:			

- Sender chooses 2ℓ random strings

String equality from OT

$m_{1,0}$	$m_{1,1}$
$m_{2,0}$	$m_{2,1}$
$m_{3,0}$	$m_{3,1}$
$m_{4,0}$	$m_{4,1}$
\vdots	\vdots

$$
y=0110 \cdots
$$

$m_{1,0}$	$?$
$?$	$m_{2,1}$
$?$	$m_{3,1}$
$m_{4,0}$	$?$
\vdots	\vdots

- Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits

String equality from OT

$x=0101 \cdots$	
$m_{1,0}$	$m_{1,1}$
$m_{2,0}$	$m_{2,1}$
$m_{3,0}$	$m_{3,1}$
$m_{4,0}$	$m_{4,1}$
\vdots	\vdots

$y=0110 \cdots$

$m_{1,0}$	$?$
$?$	$m_{2,1}$
$?$	$m_{3,1}$
$m_{4,0}$	$?$
\vdots	\vdots

- Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits
- Summary value of v defined as $\bigoplus_{i} m_{i, v_{i}}$
- Sender can compute any summary value (in particular, for x)
- Receiver can compute summary value only for y
- Summary values other than y look random to receiver

String equality from OT

$x=0101 \cdots$

$m_{1,0}$	$m_{1,1}$
$m_{2,0}$	$m_{2,1}$
$m_{3,0}$	$m_{3,1}$
$m_{4,0}$	$m_{4,1}$
\vdots	\vdots

$y=0110 \cdots$

$m_{1,0}$	$?$
$?$	$m_{2,1}$
$?$	$m_{3,1}$
$m_{4,0}$	$?$
\vdots	\vdots

- Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits
- Summary value of v defined as $\bigoplus_{i} m_{i, v_{i}}$
- Sender can compute any summary value (in particular, for x)
- Receiver can compute summary value only for y
- Summary values other than y look random to receiver

Cost: just ℓ OTs

Improving equality tests pmussmemedzameman

$x=2101 \cdots$			
$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	
$m_{2,0}$	$m_{2,1}$	$m_{2,2}$	
$m_{3,0}$	$m_{3,1}$	$m_{3,2}$	
$m_{4,0}$	$m_{4,1}$	$m_{4,3}$	
\vdots	\vdots	\vdots	

$y=0122 \cdots$		
$m_{1,0}$	$?$	$?$
$?$	$m_{2,1}$	$?$
$?$	$?$	$m_{3,2}$
$?$	$?$	$m_{4,2}$
\vdots	\vdots	\vdots

Idea: Instead of binary inputs, use base- k (base 3 in this example)

- Now only $\log _{k} \ell$ instances of 1-out-of-k OT

Improving equality tests pmussmemedzameman

$x=2101 \cdots$		
$m_{1,0}$	$m_{1,1}$	$m_{1,2}$
$m_{2,0}$	$m_{2,1}$	$m_{2,2}$
$m_{3,0}$	$m_{3,1}$	$m_{3,2}$
$m_{4,0}$	$m_{4,1}$	$m_{4,3}$
\vdots	\vdots	\vdots

$y=0122 \cdots$		
$m_{1,0}$	$?$	$?$
$?$	$m_{2,1}$	$?$
$?$	$?$	$m_{3,2}$
$?$	$?$	$m_{4,2}$
\vdots	\vdots	\vdots

Idea: Instead of binary inputs, use base- k (base 3 in this example)

- Now only $\log _{k} \ell$ instances of 1 -out-of-k OT
- Note: Only random OT required

$x=2101 \cdots$			
$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	
$m_{2,0}$	$m_{2,1}$	$m_{2,2}$	
$m_{3,0}$	$m_{3,1}$	$m_{3,2}$	
$m_{4,0}$	$m_{4,1}$	$m_{4,3}$	
\vdots	\vdots	\vdots	

$y=0122 \cdots$		
$m_{1,0}$	$?$	$?$
$?$	$m_{2,1}$	$?$
$?$	$?$	$m_{3,2}$
$?$	$?$	$m_{4,2}$
\vdots	\vdots	\vdots

Idea: Instead of binary inputs, use base- k (base 3 in this example)

- Now only $\log _{k} \ell$ instances of 1 -out-of- k OT
- Note: Only random OT required

Costs for different 1-out-of- k random OTs:

- Basic OT extension: $k=2$:

128 bits/OT

- [KolesnikovKumaresan13]: $k=2^{8} \Rightarrow$
- [OrruOrsiniScholl16]: $k=2^{76} \Rightarrow$
$3 \times$ fewer OTs @ 256 bits/OT
- [KolesnikovKumaresanRosulekTrieu16]: $k=\infty \Rightarrow$
~ 480 bits total

Another generalization

Private equality test: Alice has x, Bob has y, Bob learns $x \stackrel{?}{=} y$

Another generalization

$$
\begin{aligned}
& x_{1}=0101 \cdots \\
& x_{2}=1111 \cdots \\
& x_{3}=0010 \cdots
\end{aligned}
$$

$m_{1,0}$	$m_{1,1}$
$m_{2,0}$	$m_{2,1}$
$m_{3,0}$	$m_{3,1}$
$m_{4,0}$	$m_{4,1}$
\vdots	\vdots

$H\left(m_{1,1} \oplus m_{2,1} \oplus m_{3,1} \oplus \cdots\right)$,
$y=0110 \cdots$

$m_{1,0}$	$?$
$?$	$m_{2,1}$
$?$	$m_{3,1}$
$m_{4,0}$	$?$
\vdots	\vdots

$H\left(m_{1,0} \oplus m_{2,0} \oplus m_{3,1} \oplus \cdots\right)$

Private equality test: Alice has x, Bob has y, Bob learns $x \stackrel{?}{=} y$
Private set membership: Alice has set X, Bob has y, Bob learns $y \stackrel{?}{\in} X$

Roadmap

Crypto: Private equality tests:

- How to securely test whether two strings are identical

Algorithmic: Hashing techniques

- How to reduce number of equality tests

Building block

Cost: 1 OT primitive + sending n summary values

Dumb solution

Dumb solution

Cost: $O\left(n^{2}\right)$

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

空

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

Assign item v to bin \# $h(v)$

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

Assign item v to bin \# $h(v)$

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

Assign item v to bin \# $h(v)$

x_{6}
x_{3}
x_{2}, x_{4}
x_{1}
x_{5}

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

Assign item v to bin \# $h(v)$

x_{6}
x_{3}
x_{2}, x_{4}
x_{1}
x_{5}

y_{4}
y_{1}, y_{6}
y_{3}, y_{5}
y_{2}

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

Assign item v to bin \# $h(v)$

Do $\Theta\left(n^{2}\right)$ PSI in each bin

Idea: if both parties share an item v, both will put it in bin $h(v)$

| | $\leftarrow \mathrm{PSI} \rightarrow$ | |
| ---: | :--- | :--- | :---: |
| x_{6} | $\leftarrow \mathrm{PSI} \rightarrow$ | y_{4} |
| | $\leftarrow \mathrm{PSI} \rightarrow$ | |
| | $\leftarrow \mathrm{PSI} \rightarrow$ | y_{1}, y_{6} |
| x_{3} | $\leftarrow \mathrm{PSI} \rightarrow$ | y_{3}, y_{5} |
| x_{2}, x_{4} | $\leftarrow \mathrm{PSI} \rightarrow$ | |
| x_{1} | $\leftarrow \mathrm{PSI} \rightarrow$ | |
| x_{5} | $\leftarrow \mathrm{PSI} \rightarrow$ | y_{2} |

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

Assign item v to bin \# $h(v)$
Do $\Theta\left(n^{2}\right)$ PSI in each bin

Idea: if both parties share an item v, both will put it in bin $h(v)$

	$\leftarrow \mathrm{PSI}$	\rightarrow
x_{6}	$\leftarrow \mathrm{PSI} \rightarrow$	$\rightarrow y_{4}$
	$\leftarrow \mathrm{PSI} \rightarrow$	
	$\leftarrow \mathrm{PSI}$	$\rightarrow y_{1}, y_{6}$
x_{3}	$\leftarrow \mathrm{PSI}$	\rightarrow
y_{3}, y_{5}		
x_{2}, x_{4}	$\leftarrow \mathrm{PSI} \rightarrow$	
x_{1}	$\leftarrow \mathrm{PSI} \rightarrow$	
x_{5}	$\leftarrow \mathrm{PSI} \rightarrow$	y_{2}

Cost: $\sum_{i} O\left(a_{i} b_{i}\right)$ where $a_{i}, b_{i}=$ number of items in bin \#i

- With n items into n bins, $E[$ cost $]=O(n)$!

Better approach w/ hashing

Agree on a random hash function $h:\{0,1\}^{*} \rightarrow[m]$

Assign item v to bin \# $h(v)$
Do $\Theta\left(n^{2}\right)$ PSI in each bin

Idea: if both parties share an item v, both will put it in bin $h(v)$

	$\leftarrow \mathrm{PSI}$	\rightarrow
x_{6}	$\leftarrow \mathrm{PSI} \rightarrow$	$\rightarrow y_{4}$
	$\leftarrow \mathrm{PSI} \rightarrow$	
	$\leftarrow \mathrm{PSI}$	$\rightarrow y_{1}, y_{6}$
x_{3}	$\leftarrow \mathrm{PSI}$	\rightarrow
y_{3}, y_{5}		
x_{2}, x_{4}	$\leftarrow \mathrm{PSI} \rightarrow$	
x_{1}	$\leftarrow \mathrm{PSI} \rightarrow$	
x_{5}	$\leftarrow \mathrm{PSI} \rightarrow$	y_{2}

Cost: $\sum_{i} O\left(a_{i} b_{i}\right)$ where $a_{i}, b_{i}=$ number of items in bin \#i

- With n items into n bins, $E[$ cost $]=O(n)$!

Except, this is completely insecure! (why?)

Subtleties with hashing

```
"cost \(=\sum_{i} O\left(a_{i} b_{i}\right) "\) ??
```

- only if a_{i}, b_{i} public

Subtleties with hashing

$$
\text { "cost }=\sum_{i} O\left(a_{i} b_{i}\right) " \text { ?? }
$$

- only if a_{i}, b_{i} public

1 item
1 item
2 items
1 item
1 item

Subtleties with hashing

$$
\text { "cost }=\sum_{i} O\left(a_{i} b_{i}\right) " \text { ?? }
$$

- only if a_{i}, b_{i} public

1 item
1 item
2 items
1 item
1 item

Subtleties with hashing

"cost $=\sum_{i} O\left(a_{i} b_{i}\right) "$??

- only if a_{i}, b_{i} public

3 items
3 items

Solution:

1. Compute B such that $\operatorname{Pr}_{h}[$ no bin has $>B$ items $] \leq 2^{-s}$ (balls in bins)
2. Add dummy items so that each bin has exactly B items
\Rightarrow \# (apparent) items per bin does not depend on input.

- (Protocol fails with probability 2^{-s})

Balls \& bins questions

n balls $\stackrel{\text { randomly assign }}{\sim} m$ bins

- Expected \# balls per bin is n / m
- What is the worst case \# balls in a bin (with high probability)?

Balls \& bins questions

n balls $\stackrel{\text { randomly assign }}{\sim} m$ bins

- Expected \# balls per bin is n / m
- What is the worst case \# balls in a bin (with high probability)?

Natural parameter choice: n items, n bins

- Expected balls per bin = 1
- Worst-case balls per bin $=O(\log n)$
- PSI cost $=(\#$ bins $) \times(\text { worst-case load })^{2}=O\left(n \log ^{2} n\right)$

Balls \& bins questions

n balls $\stackrel{\text { randomly assign }}{\sim} m$ bins

- Expected \# balls per bin is n / m
- What is the worst case \# balls in a bin (with high probability)?

Natural parameter choice: n items, n bins

- Expected balls per bin = 1
- Worst-case balls per bin $=O(\log n)$
- PSI cost $=(\#$ bins $) \times(\text { worst-case load })^{2}=O\left(n \log ^{2} n\right)$

Better parameter choice: n items, $O(n / \log n)$ bins

- Expected balls per bin $=O(\log n)$
- Worst-case balls per bin $=O(\log n)$
- PSI cost $=O(n \log n)$

Improved hashing

Remember:

Our basic building block naturally supports one item from Bob

Improved hashing

Remember:

Our basic building block naturally supports one item from Bob
Idea: find hashing scheme that leaves only $\mathbf{1}$ item per bin

- Only Bob needs to have 1 item per bin

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

If $h_{1}(y)$ and $h_{2}(y)$ both occupied,

- evict someone y^{\prime} and recurse on y^{\prime}

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

If $h_{1}(y)$ and $h_{2}(y)$ both occupied,

- evict someone y^{\prime} and recurse on y^{\prime}

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

If $h_{1}(y)$ and $h_{2}(y)$ both occupied,

- evict someone y^{\prime} and recurse on y^{\prime}

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

If $h_{1}(y)$ and $h_{2}(y)$ both occupied,

- evict someone y^{\prime} and recurse on y^{\prime}

y_{3}
y_{2}
y_{1}

Cuckoo hashing

Use 2 random hash functions h_{1}, h_{2}
If either $h_{1}(y)$ or $h_{2}(y)$ is empty,

- put y in that bin

If $h_{1}(y)$ and $h_{2}(y)$ both occupied,

- evict someone y^{\prime} and recurse on y^{\prime}

Claim: with sufficient bins, this process terminates with high probability

Agree on h_{1}, h_{2}

Bob hashes with Cuckoo hashing

Agree on h_{1}, h_{2}

Bob hashes with Cuckoo hashing

What about Alice?

Agree on h_{1}, h_{2}

Bob hashes with Cuckoo hashing

What about Alice?

- Place x in both $h_{1}(x)$ and $h_{2}(x)$

Agree on h_{1}, h_{2}

Bob hashes with Cuckoo hashing

What about Alice?

- Place x in both $h_{1}(x)$ and $h_{2}(x)$

Agree on h_{1}, h_{2}
Bob hashes with Cuckoo hashing

What about Alice?

- Place x in both $h_{1}(x)$ and $h_{2}(x)$

	$\leftarrow \mathrm{PMT} \rightarrow$	
x_{6}, x_{1}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{4}
x_{6}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{6}
x_{1}, x_{3}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{1}
x_{3}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{3}
x_{2}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	
x_{5}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{5}
x_{5}, x_{2}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{2}

PMT in each bin

Agree on h_{1}, h_{2}
Bob hashes with Cuckoo hashing

What about Alice?

- Place x in both $h_{1}(x)$ and $h_{2}(x)$

	$\leftarrow \mathrm{PMT} \rightarrow$	
x_{6}, x_{1}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{4}
x_{6}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{6}
x_{1}, x_{3}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{1}
x_{3}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{3}
x_{2}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	
x_{5}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{5}
x_{5}, x_{2}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{2}

PMT in each bin
Idea: Only Bob gets output from PMT

- He places y in $h_{?}(y)$; if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in $h_{1}(y)$ or $h_{2}(y)$

Cuckoo hashing PSI details

Don't forget: Alice should pad with dummy items! ($2 n$ balls in m bins)

$X_{6},{ }_{1}$	$\begin{aligned} & -\mathrm{PMT} \rightarrow \\ & -\mathrm{PMT} \rightarrow \end{aligned}$	
		y_{4}
χ_{6}	PMT \rightarrow	y_{6}
X_{1}, x_{3}	PMT \rightarrow	y_{1}
X_{3}, x_{4}	- PMT \rightarrow	y_{3}
X_{2}, x_{4}	- PMT \rightarrow	
X_{5}	- PMT \rightarrow	y_{5}
X_{5}, x_{2}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{2}

Cuckoo hashing PSI details

Don't forget: Alice should pad with dummy items! ($2 n$ balls in m bins)

\perp, \perp	$\leftarrow \mathrm{PMT} \rightarrow$	
x_{6}, x_{1}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{4}
x_{6}, \perp	$\leftarrow \mathrm{PMT} \rightarrow$	y_{6}
x_{1}, x_{3}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{1}
x_{3}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{3}
x_{2}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	
x_{5}, \perp	$\leftarrow \mathrm{PMT} \rightarrow$	y_{5}
x_{5}, x_{2}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{2}

Cuckoo hashing PSI details

Don't forget: Alice should pad with dummy items! ($2 n$ balls in m bins)

- Bob too!

Cuckoo hashing PSI details

Don't forget: Alice should pad with dummy items! ($2 n$ balls in m bins)

- Bob too!

Cost:

- $\sim 1.5 n$ bins for Cuckoo
- At most $O(\log n)$

\perp, \perp	$\leftarrow \mathrm{PMT} \rightarrow$	\perp^{\prime}
x_{6}, x_{1}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{4}
x_{6}, \perp	$\leftarrow \mathrm{PMT} \rightarrow$	y_{6}
x_{1}, x_{3}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{1}
x_{3}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{3}
x_{2}, x_{4}	$\leftarrow \mathrm{PMT} \rightarrow$	\perp^{\prime}
x_{5}, \perp	$\leftarrow \mathrm{PMT} \rightarrow$	y_{5}
x_{5}, x_{2}	$\leftarrow \mathrm{PMT} \rightarrow$	y_{2}

\Rightarrow Still $O(n \log n)$ cost!

Avoiding dummy items

Avoiding dummy items

Avoiding dummy items

Summary values can be sent all together

all summary values, shuffled

Avoiding dummy items

Summary values can be sent all together

- No longer associated with bins

Previously:

- Can't leak \# true items in a bin

Now:

- Everyone knows: n true items $\Rightarrow 2 n$ true summary masks
\Rightarrow Send only summary masks of true items

all summary values, shuffled

Cuckoo PSI costs

Other details:

- Actually use Cuckoo hashing with $\mathbf{3}$ hash functions

Costs:

- ~ $1.5 n$ Cuckoo bins
- ~ $1.5 n$ OT primitives
- $2 n$ summary masks
\Rightarrow total cost $O(n)$

Performance: [KolesnikovKumaresanRosulekTrieu16] = most efficient 1-out-of- ∞ OT equality test

- PSI of 1 million items
- Insecure protocol (hash and send)
$\Rightarrow 3.8$ seconds @ 120 MB
$\Rightarrow \mathbf{0 . 7}$ seconds @ 10 MB

