
Private Set Intersection
Mike Rosulek

crypt@b-it 2018

⁇⁇

.
.
.
.
.
.
.
.



Private set intersection (PSI)

Special case of secure 2-party computation:

X = {x1, x2, . . .} Y = {y1, y2, . . .}

PSI
X Y

X ∩ Y

.
.
.
.
.
.
.
.



PSI applications
Contact discovery, when signing up for WhatsApp
▶ X = address book in my phone (phone numbers)
▶ Y = WhatsApp user database

Private scheduling
▶ X = available timeslots on my calendar
▶ Y = available timeslots on your calendar

Ad conversion rate (PSI variant)
▶ X = users who saw the advertisement
▶ Y = customers who bought the product

No-fly list
▶ X = passenger list of flight 123
▶ Y = government no-fly list

.
.
.
.
.
.
.
.



PSI applications
Contact discovery, when signing up for WhatsApp
▶ X = address book in my phone (phone numbers)
▶ Y = WhatsApp user database

Private scheduling
▶ X = available timeslots on my calendar
▶ Y = available timeslots on your calendar

Ad conversion rate (PSI variant)
▶ X = users who saw the advertisement
▶ Y = customers who bought the product

No-fly list
▶ X = passenger list of flight 123
▶ Y = government no-fly list

.
.
.
.
.
.
.
.



PSI applications
Contact discovery, when signing up for WhatsApp
▶ X = address book in my phone (phone numbers)
▶ Y = WhatsApp user database

Private scheduling
▶ X = available timeslots on my calendar
▶ Y = available timeslots on your calendar

Ad conversion rate (PSI variant)
▶ X = users who saw the advertisement
▶ Y = customers who bought the product

No-fly list
▶ X = passenger list of flight 123
▶ Y = government no-fly list

.
.
.
.
.
.
.
.



PSI applications
Contact discovery, when signing up for WhatsApp
▶ X = address book in my phone (phone numbers)
▶ Y = WhatsApp user database

Private scheduling
▶ X = available timeslots on my calendar
▶ Y = available timeslots on your calendar

Ad conversion rate (PSI variant)
▶ X = users who saw the advertisement
▶ Y = customers who bought the product

No-fly list
▶ X = passenger list of flight 123
▶ Y = government no-fly list

.
.
.
.
.
.
.
.



“Obvious” protocol

x1, x2, . . . y1, y2, . . .
H(x1),H(x2), . . .

compare: H(y1), . . .

I wonder if she had item v

INSECURE: Receiver can test any v
?∈ {x1, . . . , xn}, offline

▶ Problematic if items have low entropy (e.g., phone numbers)

.
.
.
.
.
.
.
.



“Obvious” protocol

x1, x2, . . . y1, y2, . . .
H(x1),H(x2), . . .

compare: H(y1), . . .

I wonder if she had item v

INSECURE: Receiver can test any v
?∈ {x1, . . . , xn}, offline

▶ Problematic if items have low entropy (e.g., phone numbers)

.
.
.
.
.
.
.
.



Classical protocol [Meadows86,HubermanFranklinHogg99]

x y

H(x)α

H(y)β ;H(x)α β

check: H(x)α β ?
= H(y)βα

H(x1)α ,H(x2)α , . . .

H(y1)β ,H(x2)β , . . .

H(x1)α β ,H(x2)α β , . . .

special case: each party has just one item

Idea:
▶ If x = y, then H(x)α β = H(y)βα

▶ If x , y, they are independently random (when H is random oracle)

Drawback: O(n) expensive exponentiations

.
.
.
.
.
.
.
.



Classical protocol [Meadows86,HubermanFranklinHogg99]

x yH(x)α

H(y)β ;H(x)α β

check: H(x)α β ?
= H(y)βα

H(x1)α ,H(x2)α , . . .

H(y1)β ,H(x2)β , . . .

H(x1)α β ,H(x2)α β , . . .

special case: each party has just one item

Idea:
▶ If x = y, then H(x)α β = H(y)βα

▶ If x , y, they are independently random (when H is random oracle)

Drawback: O(n) expensive exponentiations

.
.
.
.
.
.
.
.



Classical protocol [Meadows86,HubermanFranklinHogg99]

x1, x2, . . . y1, y2, . . .

H(x)α

H(y)β ;H(x)α β

check: H(x)α β ?
= H(y)βα

H(x1)α ,H(x2)α , . . .

H(y1)β ,H(x2)β , . . .

H(x1)α β ,H(x2)α β , . . .

special case: each party has just one item

Idea:
▶ If x = y, then H(x)α β = H(y)βα

▶ If x , y, they are independently random (when H is random oracle)

Drawback: O(n) expensive exponentiations

.
.
.
.
.
.
.
.



Classical protocol [Meadows86,HubermanFranklinHogg99]

x1, x2, . . . y1, y2, . . .

H(x)α

H(y)β ;H(x)α β

check: H(x)α β ?
= H(y)βα

H(x1)α ,H(x2)α , . . .

H(y1)β ,H(x2)β , . . .

H(x1)α β ,H(x2)α β , . . .

special case: each party has just one item

Idea:
▶ If x = y, then H(x)α β = H(y)βα

▶ If x , y, they are independently random (when H is random oracle)

Drawback: O(n) expensive exponentiations

.
.
.
.
.
.
.
.



Roadmap

1
Crypto: Private equality tests:
▶ How to securely test whether two strings are identical
▶ Focus on building from OT (and similar primitives) in light

of OT extension

2 Algorithmic: Hashing techniques
▶ How to reduce number of equality tests

.
.
.
.
.
.
.
.



Simplest case: string equality

x y

does x = y?

Using Yao’s protocol: (x, y ∈ {0, 1}ℓ)
▶ ℓ OTs
▶ Boolean circuit with ℓ − 1 AND gates
▶ E.g.: ℓ = 64⇒ 48 Kbits

.
.
.
.
.
.
.
.



Simplest case: string equality

x y

does x = y?

Using Yao’s protocol: (x, y ∈ {0, 1}ℓ)
▶ ℓ OTs
▶ Boolean circuit with ℓ − 1 AND gates
▶ E.g.: ℓ = 64⇒ 48 Kbits

.
.
.
.
.
.
.
.



String equality from OT

x y

OT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·
m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

▶ Sender chooses 2ℓ random strings

▶ Receiver uses bits of y as OT choice bits
▶ Summary value of v defined as

⊕
i mi,vi

▶ Sender can compute any summary value (in particular, for x)
▶ Receiver can compute summary value only for y
▶ Summary values other than y look random to receiver

Cost: just ℓ OTs

.
.
.
.
.
.
.
.



String equality from OT

x yOT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·

m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

▶ Sender chooses 2ℓ random strings
▶ Receiver uses bits of y as OT choice bits

▶ Summary value of v defined as
⊕

i mi,vi
▶ Sender can compute any summary value (in particular, for x)
▶ Receiver can compute summary value only for y
▶ Summary values other than y look random to receiver

Cost: just ℓ OTs

.
.
.
.
.
.
.
.



String equality from OT

x yOT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·
m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

▶ Sender chooses 2ℓ random strings
▶ Receiver uses bits of y as OT choice bits
▶ Summary value of v defined as

⊕
i mi,vi

▶ Sender can compute any summary value (in particular, for x)
▶ Receiver can compute summary value only for y
▶ Summary values other than y look random to receiver

Cost: just ℓ OTs

.
.
.
.
.
.
.
.



String equality from OT

x yOT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·
m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

▶ Sender chooses 2ℓ random strings
▶ Receiver uses bits of y as OT choice bits
▶ Summary value of v defined as

⊕
i mi,vi

▶ Sender can compute any summary value (in particular, for x)
▶ Receiver can compute summary value only for y
▶ Summary values other than y look random to receiver

Cost: just ℓ OTs

.
.
.
.
.
.
.
.



Improving equality tests [PinkasSchneiderZohner14]

x yOT(×ℓ)

m1,2 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1 m1,2

m2,0 m2,1 m2,2

m3,0 m3,1 m3,2

m4,0 m4,1 m4,3

...
...

...

x = 2101 · · ·
m1,0 ? ?
? m2,1 ?
? ? m3,2

? ? m4,2

...
...

...

y = 0122 · · ·

Idea: Instead of binary inputs, use base-k (base 3 in this example)
▶ Now only logk ℓ instances of 1-out-of-k OT

▶ Note: Only random OT required

Costs for different 1-out-of-k random OTs:
▶ Basic OT extension: k = 2: 128 bits/OT
▶ [KolesnikovKumaresan13]: k = 28⇒ 3× fewer OTs @ 256 bits/OT
▶ [OrruOrsiniScholl16]: k = 276⇒ 76× fewer OTs @ 512 bits/OT
▶ [KolesnikovKumaresanRosulekTrieu16]: k = ∞⇒ ∼ 480 bits total

.
.
.
.
.
.
.
.



Improving equality tests [PinkasSchneiderZohner14]

x yOT(×ℓ)

m1,2 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1 m1,2

m2,0 m2,1 m2,2

m3,0 m3,1 m3,2

m4,0 m4,1 m4,3

...
...

...

x = 2101 · · ·
m1,0 ? ?
? m2,1 ?
? ? m3,2

? ? m4,2

...
...

...

y = 0122 · · ·

Idea: Instead of binary inputs, use base-k (base 3 in this example)
▶ Now only logk ℓ instances of 1-out-of-k OT
▶ Note: Only random OT required

Costs for different 1-out-of-k random OTs:
▶ Basic OT extension: k = 2: 128 bits/OT
▶ [KolesnikovKumaresan13]: k = 28⇒ 3× fewer OTs @ 256 bits/OT
▶ [OrruOrsiniScholl16]: k = 276⇒ 76× fewer OTs @ 512 bits/OT
▶ [KolesnikovKumaresanRosulekTrieu16]: k = ∞⇒ ∼ 480 bits total

.
.
.
.
.
.
.
.



Improving equality tests [PinkasSchneiderZohner14]

x yOT(×ℓ)

m1,2 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

m1,0 m1,1 m1,2

m2,0 m2,1 m2,2

m3,0 m3,1 m3,2

m4,0 m4,1 m4,3

...
...

...

x = 2101 · · ·
m1,0 ? ?
? m2,1 ?
? ? m3,2

? ? m4,2

...
...

...

y = 0122 · · ·

Idea: Instead of binary inputs, use base-k (base 3 in this example)
▶ Now only logk ℓ instances of 1-out-of-k OT
▶ Note: Only random OT required

Costs for different 1-out-of-k random OTs:
▶ Basic OT extension: k = 2: 128 bits/OT
▶ [KolesnikovKumaresan13]: k = 28⇒ 3× fewer OTs @ 256 bits/OT
▶ [OrruOrsiniScholl16]: k = 276⇒ 76× fewer OTs @ 512 bits/OT
▶ [KolesnikovKumaresanRosulekTrieu16]: k = ∞⇒ ∼ 480 bits total

.
.
.
.
.
.
.
.



Another generalization

yOT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

H(m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · · ),
H(m1,1 ⊕ m2,1 ⊕ m3,1 ⊕ · · · ),
H(m1,0 ⊕ m2,0 ⊕ m3,1 ⊕ · · · )

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·

x1 = 0101 · · ·
x2 = 1111 · · ·
x3 = 0010 · · ·

m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

Private equality test: Alice has x, Bob has y, Bob learns x ?
= y

Private set membership: Alice has set X, Bob has y, Bob learns y
?∈ X

.
.
.
.
.
.
.
.



Another generalization

yOT(×ℓ)

m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · ·

H(m1,0 ⊕ m2,1 ⊕ m3,0 ⊕ · · · ),
H(m1,1 ⊕ m2,1 ⊕ m3,1 ⊕ · · · ),
H(m1,0 ⊕ m2,0 ⊕ m3,1 ⊕ · · · )

m1,0 m1,1

m2,0 m2,1

m3,0 m3,1

m4,0 m4,1

...
...

x = 0101 · · ·

x1 = 0101 · · ·
x2 = 1111 · · ·
x3 = 0010 · · ·

m1,0 ?
? m2,1

? m3,1

m4,0 ?
...

...

y = 0110 · · ·

Private equality test: Alice has x, Bob has y, Bob learns x ?
= y

Private set membership: Alice has set X, Bob has y, Bob learns y
?∈ X

.
.
.
.
.
.
.
.



Roadmap

1 Crypto: Private equality tests:
▶ How to securely test whether two strings are identical

2 Algorithmic: Hashing techniques
▶ How to reduce number of equality tests

.
.
.
.
.
.
.
.



Building block

S = {s1, . . .} v

PMT
S v

v
?∈ S

Cost: 1 OT primitive + sending n summary values

.
.
.
.
.
.
.
.



Dumb solution

X = {x1, . . .} Y = {y1, . . .}PMT
X y1

PMT
X y2

PMT
X y3

...

Cost: O(n2)

.
.
.
.
.
.
.
.



Dumb solution

X = {x1, . . .} Y = {y1, . . .}PMT
X y1

PMT
X y2

PMT
X y3

...

Cost: O(n2)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

h(x1) = 7

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2

h(x2) = 6

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Better approach w/ hashing
Agree on a random hash
function h : {0, 1}∗ → [m]

Assign item v to bin # h(v)

Do Θ(n2) PSI in each bin

Idea: if both parties share
an item v, both will put it
in bin h(v)

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

← PSI→

x1

x2, x4

x3

x5

x6

y1, y6

y2

y3, y5

y4

Cost:
∑

i O(aibi) where ai, bi = number of items in bin #i
▶ With n items into n bins, E[cost] = O(n) !

Except, this is completely insecure! (why?)

.
.
.
.
.
.
.
.



Subtleties with hashing

“cost =
∑

i O(aibi)” ⁇
▶ only if ai, bi public

x1

x2, x4

x3

x5

x6

1 item

2 items

1 item

1 item

1 item she has no x
with h(x) = 3

3 items

3 items

3 items

3 items

3 items

3 items

3 items

3 items

Solution:
1. Compute B such that Prh[no bin has > B items] ≤ 2−s (balls in bins)

2. Add dummy items so that each bin has exactly B items

⇒ # (apparent) items per bin does not depend on input.
▶ (Protocol fails with probability 2−s)

.
.
.
.
.
.
.
.



Subtleties with hashing

“cost =
∑

i O(aibi)” ⁇
▶ only if ai, bi public

x1

x2, x4

x3

x5

x6

1 item

2 items

1 item

1 item

1 item

she has no x
with h(x) = 3

3 items

3 items

3 items

3 items

3 items

3 items

3 items

3 items

Solution:
1. Compute B such that Prh[no bin has > B items] ≤ 2−s (balls in bins)

2. Add dummy items so that each bin has exactly B items

⇒ # (apparent) items per bin does not depend on input.
▶ (Protocol fails with probability 2−s)

.
.
.
.
.
.
.
.



Subtleties with hashing

“cost =
∑

i O(aibi)” ⁇
▶ only if ai, bi public

x1

x2, x4

x3

x5

x6

1 item

2 items

1 item

1 item

1 item she has no x
with h(x) = 3

3 items

3 items

3 items

3 items

3 items

3 items

3 items

3 items

Solution:
1. Compute B such that Prh[no bin has > B items] ≤ 2−s (balls in bins)

2. Add dummy items so that each bin has exactly B items

⇒ # (apparent) items per bin does not depend on input.
▶ (Protocol fails with probability 2−s)

.
.
.
.
.
.
.
.



Subtleties with hashing

“cost =
∑

i O(aibi)” ⁇
▶ only if ai, bi public

x1

x2, x4

x3

x5

x6

1 item

2 items

1 item

1 item

1 item she has no x
with h(x) = 3

3 items

3 items

3 items

3 items

3 items

3 items

3 items

3 items

Solution:
1. Compute B such that Prh[no bin has > B items] ≤ 2−s (balls in bins)

2. Add dummy items so that each bin has exactly B items

⇒ # (apparent) items per bin does not depend on input.
▶ (Protocol fails with probability 2−s)

.
.
.
.
.
.
.
.



Balls & bins questions

n balls
randomly assign
{ m bins

▶ Expected # balls per bin is n/m
▶ What is the worst case # balls in a bin (with high probability)?

Natural parameter choice: n items, n bins
▶ Expected balls per bin = 1
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = (# bins) × (worst-case load)2 = O(n log2 n)

Better parameter choice: n items, O(n/ log n) bins [good to know!]
▶ Expected balls per bin = O(log n)
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = O(n log n)

.
.
.
.
.
.
.
.



Balls & bins questions

n balls
randomly assign
{ m bins

▶ Expected # balls per bin is n/m
▶ What is the worst case # balls in a bin (with high probability)?

Natural parameter choice: n items, n bins
▶ Expected balls per bin = 1
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = (# bins) × (worst-case load)2 = O(n log2 n)

Better parameter choice: n items, O(n/ log n) bins [good to know!]
▶ Expected balls per bin = O(log n)
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = O(n log n)

.
.
.
.
.
.
.
.



Balls & bins questions

n balls
randomly assign
{ m bins

▶ Expected # balls per bin is n/m
▶ What is the worst case # balls in a bin (with high probability)?

Natural parameter choice: n items, n bins
▶ Expected balls per bin = 1
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = (# bins) × (worst-case load)2 = O(n log2 n)

Better parameter choice: n items, O(n/ log n) bins [good to know!]
▶ Expected balls per bin = O(log n)
▶ Worst-case balls per bin = O(log n)
▶ PSI cost = O(n log n)

.
.
.
.
.
.
.
.



Improved hashing

Remember:

S = {s1, . . .} v

PMT
S v

v
?∈ S

Our basic building block naturally supports one item from Bob

Idea: find hashing scheme that leaves only 1 item per bin
▶ Only Bob needs to have 1 item per bin

.
.
.
.
.
.
.
.



Improved hashing

Remember:

S = {s1, . . .} v

PMT
S v

v
?∈ S

Our basic building block naturally supports one item from Bob

Idea: find hashing scheme that leaves only 1 item per bin
▶ Only Bob needs to have 1 item per bin

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2
y1

y2

y2

y3
y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2

y1

y2

y2

y3
y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2

y1

y2

y2

y3
y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2

y1

y2

y2

y3
y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2

y1

y2

y2

y3
y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2

y1

y2

y2

y3

y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2
y1

y2

y2

y3

y3

y1

y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2
y1

y2

y2

y3

y3

y1

y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2
y1

y2

y2

y3

y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing

Use 2 random hash functions h1, h2

If either h1(y) or h2(y) is empty,
▶ put y in that bin

If h1(y) and h2(y) both occupied,
▶ evict someone y′ and recurse on y′

y1

h1

h2
y1

y2

y2

y3

y3

y1y1

y1

Claim: with sufficient bins, this process terminates with high probability

.
.
.
.
.
.
.
.



Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h1, h2

Bob hashes with Cuckoo
hashing

What about Alice?

▶ Place x in both h1(x)
and h2(x)

PMT in each bin
← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x1 x1

x1

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

y1

y2

y3

y4

y5

y6

Idea: Only Bob gets output from PMT
▶ He places y in h?(y); if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in h1(y) or h2(y)

.
.
.
.
.
.
.
.



Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h1, h2

Bob hashes with Cuckoo
hashing

What about Alice?

▶ Place x in both h1(x)
and h2(x)

PMT in each bin
← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x1

x1

x1

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

y1

y2

y3

y4

y5

y6

Idea: Only Bob gets output from PMT
▶ He places y in h?(y); if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in h1(y) or h2(y)

.
.
.
.
.
.
.
.



Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h1, h2

Bob hashes with Cuckoo
hashing

What about Alice?
▶ Place x in both h1(x)

and h2(x)

PMT in each bin
← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x1 x1

x1

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

y1

y2

y3

y4

y5

y6

Idea: Only Bob gets output from PMT
▶ He places y in h?(y); if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in h1(y) or h2(y)

.
.
.
.
.
.
.
.



Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h1, h2

Bob hashes with Cuckoo
hashing

What about Alice?
▶ Place x in both h1(x)

and h2(x)

PMT in each bin
← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x1 x1

x1

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6
y1

y2

y3

y4

y5

y6

Idea: Only Bob gets output from PMT
▶ He places y in h?(y); if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in h1(y) or h2(y)

.
.
.
.
.
.
.
.



Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h1, h2

Bob hashes with Cuckoo
hashing

What about Alice?
▶ Place x in both h1(x)

and h2(x)

PMT in each bin
← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x1 x1

x1

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6
y1

y2

y3

y4

y5

y6

Idea: Only Bob gets output from PMT
▶ He places y in h?(y); if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in h1(y) or h2(y)

.
.
.
.
.
.
.
.



Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h1, h2

Bob hashes with Cuckoo
hashing

What about Alice?
▶ Place x in both h1(x)

and h2(x)

PMT in each bin
← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x1 x1

x1

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6
y1

y2

y3

y4

y5

y6

Idea: Only Bob gets output from PMT
▶ He places y in h?(y); if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in h1(y) or h2(y)

.
.
.
.
.
.
.
.



Cuckoo hashing PSI details

Don’t forget: Alice
should pad with dummy
items! (2n balls in m bins)

▶ Bob too!

Cost:
▶ ∼ 1.5n bins for

Cuckoo
▶ At most O(log n)

items per bin for
Alice

⇒ Still O(n log n) cost!

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Cuckoo hashing PSI details

Don’t forget: Alice
should pad with dummy
items! (2n balls in m bins)

▶ Bob too!

Cost:
▶ ∼ 1.5n bins for

Cuckoo
▶ At most O(log n)

items per bin for
Alice

⇒ Still O(n log n) cost!

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Cuckoo hashing PSI details

Don’t forget: Alice
should pad with dummy
items! (2n balls in m bins)
▶ Bob too!

Cost:
▶ ∼ 1.5n bins for

Cuckoo
▶ At most O(log n)

items per bin for
Alice

⇒ Still O(n log n) cost!

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Cuckoo hashing PSI details

Don’t forget: Alice
should pad with dummy
items! (2n balls in m bins)
▶ Bob too!

Cost:
▶ ∼ 1.5n bins for

Cuckoo
▶ At most O(log n)

items per bin for
Alice

⇒ Still O(n log n) cost!

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

← PMT→

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5

x6

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Avoiding dummy items

Summary values can be sent
all together

▶ No longer associated
with bins

Previously:
▶ Can’t leak # true items

in a bin

Now:
▶ Everyone knows: n true

items⇒ 2n true
summary masks

⇒ Send only summary
masks of true items

PMT

PMT

PMT

PMT

PMT

PMT

PMT

PMT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

summary values

summary values

summary values

summary values

summary values

summary values

summary values

summary values

all summary values, shuffled

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Avoiding dummy items

Summary values can be sent
all together

▶ No longer associated
with bins

Previously:
▶ Can’t leak # true items

in a bin

Now:
▶ Everyone knows: n true

items⇒ 2n true
summary masks

⇒ Send only summary
masks of true items PMT

PMT

PMT

PMT

PMT

PMT

PMT

PMT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

summary values

summary values

summary values

summary values

summary values

summary values

summary values

summary values

all summary values, shuffled

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Avoiding dummy items
Summary values can be sent
all together

▶ No longer associated
with bins

Previously:
▶ Can’t leak # true items

in a bin

Now:
▶ Everyone knows: n true

items⇒ 2n true
summary masks

⇒ Send only summary
masks of true items PMT

PMT

PMT

PMT

PMT

PMT

PMT

PMT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

summary values

summary values

summary values

summary values

summary values

summary values

summary values

summary values

all summary values, shuffled

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Avoiding dummy items
Summary values can be sent
all together
▶ No longer associated

with bins

Previously:
▶ Can’t leak # true items

in a bin

Now:
▶ Everyone knows: n true

items⇒ 2n true
summary masks

⇒ Send only summary
masks of true items

PMT

PMT

PMT

PMT

PMT

PMT

PMT

PMT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

ROT

summary values

summary values

summary values

summary values

summary values

summary values

summary values

summary values

all summary values, shuffled

x2, x4

x3, x4

x5, x2

x6, x1

x1, x3

x5,⊥

x6,⊥

⊥,⊥

y1

y2

y3

y4

y5

y6

⊥′

⊥′

.
.
.
.
.
.
.
.



Cuckoo PSI costs
Other details:
▶ Actually use Cuckoo hashing with 3 hash functions

Costs:
▶ ∼ 1.5n Cuckoo bins
▶ ∼ 1.5n OT primitives
▶ 2n summary masks

⇒ total cost O(n)

Performance: [KolesnikovKumaresanRosulekTrieu16] = most efficient 1-out-of-∞
OT equality test
▶ PSI of 1 million items ⇒ 3.8 seconds @ 120 MB
▶ Insecure protocol (hash and send) ⇒ 0.7 seconds @ 10 MB

.
.
.
.
.
.
.
.


