
Protecting Yao from Malicious A�acks
Mike Rosulek

crypt@b-it 2018

Yao’s Protocol Recap

yx

OT
x

garbled x
garbled circuit

garble f (·, y)

garbled f (x, y)

Yao

x f (·, y)

nf (x, y) o

g(·)

ng(x) o

I Full security against malicious receiver
I Malicious sender can construct bad garbled circuit

I (essentially the only thing that can go wrong with Yao)

Yao’s Protocol Recap

yx OT
x

garbled x

garbled circuit

garble f (·, y)

garbled f (x, y)

Yao

x f (·, y)

nf (x, y) o

g(·)

ng(x) o

I Full security against malicious receiver
I Malicious sender can construct bad garbled circuit

I (essentially the only thing that can go wrong with Yao)

Yao’s Protocol Recap

yx OT
x

garbled x
garbled circuit

garble f (·, y)

garbled f (x, y)

Yao

x f (·, y)

nf (x, y) o

g(·)

ng(x) o

I Full security against malicious receiver
I Malicious sender can construct bad garbled circuit

I (essentially the only thing that can go wrong with Yao)

Yao’s Protocol Recap

yx OT
x

garbled x
garbled circuit

garble f (·, y)

garbled f (x, y)

Yao

x f (·, y)

nf (x, y) o

g(·)

ng(x) o

I Full security against malicious receiver
I Malicious sender can construct bad garbled circuit

I (essentially the only thing that can go wrong with Yao)

Yao’s Protocol Recap

yx

OT
x

garbled x
garbled circuit

garble f (·, y)

garbled f (x, y)

Yao

x f (·, y)

nf (x, y) o

g(·)

ng(x) o

I Full security against malicious receiver
I Malicious sender can construct bad garbled circuit

I (essentially the only thing that can go wrong with Yao)

Yao’s Protocol Recap

y

x

OT
x

garbled x
garbled circuit

garble f (·, y)

garbled f (x, y)

Yao

x

f (·, y)

nf (x, y) o

g(·)

ng(x) o

I Full security against malicious receiver
I Malicious sender can construct bad garbled circuit

I (essentially the only thing that can go wrong with Yao)

Yao’s Protocol Recap

y

x

OT
x

garbled x
garbled circuit

garble f (·, y)

garbled f (x, y)

Yao

x

f (·, y)

nf (x, y) o

g(·)

ng(x) o

I Full security against malicious receiver
I Malicious sender can construct bad garbled circuit

I (essentially the only thing that can go wrong with Yao)

Roadmap

1 Cut-and-choose:
I Concepts & mechanisms: reducing replication factor
I Security pitfalls & challenges

2 Dual execution: security minus 1 bit of leakage

3 Batch se�ing: economies of scale for repeated computations

Essence of cut-and-choose

How can you be sure that a garbled circuit was
generated correctly?

Opening a garbled circuit
A0,A1

B0,B1

C0,C1

D0,D1

E0, E1

F0, F1

G0,G1
H0,H1

I0, I1

EA0,B0 (E0)
EA0,B1 (E1)
EA1,B0 (E0)
EA1,B1 (E0)

EA0,B0 (F0)
EA0,B1 (F1)
EA1,B0 (F1)
EA1,B1 (F0)

EC0,D0 (G0)

EC0,D1 (G1)

EC1,D0 (G0)

EC1,D1 (G0)

EF0,G0 (H0)

EF0,G1 (H1)

EF1,G0 (H0)

EF1,G1 (H0)

EE0,H0 (I0)
EE0,H1 (I1)
EE1,H0 (I1)
EE1,H1 (I1)

Seeing all input labels⇒ can check correctness of garbled gates

I (Be�er yet, give a seed to PRG that determines all input labels)

I This circuit no longer provides any privacy to computation!
I Can open/check a garbled circuit or use it for evaluation, not both!

Opening a garbled circuit
A0,A1

B0,B1

C0,C1

D0,D1

E0, E1

F0, F1

G0,G1
H0,H1

I0, I1

EA0,B0 (E0)
EA0,B1 (E1)
EA1,B0 (E0)
EA1,B1 (E0)

EA0,B0 (F0)
EA0,B1 (F1)
EA1,B0 (F1)
EA1,B1 (F0)

EC0,D0 (G0)

EC0,D1 (G1)

EC1,D0 (G0)

EC1,D1 (G0)

EF0,G0 (H0)

EF0,G1 (H1)

EF1,G0 (H0)

EF1,G1 (H0)

EE0,H0 (I0)
EE0,H1 (I1)
EE1,H0 (I1)
EE1,H1 (I1)

Seeing all input labels⇒ can check correctness of garbled gates

I (Be�er yet, give a seed to PRG that determines all input labels)

I This circuit no longer provides any privacy to computation!
I Can open/check a garbled circuit or use it for evaluation, not both!

Opening a garbled circuit
A0,A1

B0,B1

C0,C1

D0,D1

E0, E1

F0, F1

G0,G1
H0,H1

I0, I1

EA0,B0 (E0)
EA0,B1 (E1)
EA1,B0 (E0)
EA1,B1 (E0)

EA0,B0 (F0)
EA0,B1 (F1)
EA1,B0 (F1)
EA1,B1 (F0)

EC0,D0 (G0)

EC0,D1 (G1)

EC1,D0 (G0)

EC1,D1 (G0)

EF0,G0 (H0)

EF0,G1 (H1)

EF1,G0 (H0)

EF1,G1 (H0)

EE0,H0 (I0)
EE0,H1 (I1)
EE1,H0 (I1)
EE1,H1 (I1)

Seeing all input labels⇒ can check correctness of garbled gates

I (Be�er yet, give a seed to PRG that determines all input labels)
I This circuit no longer provides any privacy to computation!
I Can open/check a garbled circuit or use it for evaluation, not both!

Essence of cut-and-choose
yx

YaoYaoYaoYao

Cut-and-choose approach:

1. Prepare for several independent instances of Yao’s protocol

2. Open/check some random subset of the garbled circuits
I Abort if any garbled circuits are bad!

3. Evaluate the remaining ones normally
I If all opened circuits are good, the other circuits “probably” good too

�estions:
I How many instances are needed? (replication factor) How many
should be opened?

I How to actually do this without introducing new security flaws?

Essence of cut-and-choose
yx

YaoYaoYaoYao

Cut-and-choose approach:

1. Prepare for several independent instances of Yao’s protocol
2. Open/check some random subset of the garbled circuits

I Abort if any garbled circuits are bad!

3. Evaluate the remaining ones normally
I If all opened circuits are good, the other circuits “probably” good too

�estions:
I How many instances are needed? (replication factor) How many
should be opened?

I How to actually do this without introducing new security flaws?

Essence of cut-and-choose
yx

YaoYaoYaoYao

Cut-and-choose approach:

1. Prepare for several independent instances of Yao’s protocol
2. Open/check some random subset of the garbled circuits

I Abort if any garbled circuits are bad!

3. Evaluate the remaining ones normally
I If all opened circuits are good, the other circuits “probably” good too

�estions:
I How many instances are needed? (replication factor) How many
should be opened?

I How to actually do this without introducing new security flaws?

All-but-one [AumannLindell07]

yx
YaoYaoYaoYaoYao

Garble n copies

; open random n − 1; evaluate 1

Adversary wins⇔

{
all opened circuits are good

unopened circuit is bad

⇔ Adv exactly predicts cut-choose challenge

Adversary can win with probability 1/n (too high!)

All-but-one [AumannLindell07]

yx
YaoYaoYaoYaoYao

Garble n copies; open random n − 1; evaluate 1

Adversary wins⇔

{
all opened circuits are good

unopened circuit is bad

⇔ Adv exactly predicts cut-choose challenge

Adversary can win with probability 1/n (too high!)

All-but-one [AumannLindell07]

y

x
YaoYaoYaoYaoYao

Garble n copies; open random n − 1; evaluate 1

Adversary wins⇔

{
all opened circuits are good

unopened circuit is bad

⇔ Adv exactly predicts cut-choose challenge

Adversary can win with probability 1/n (too high!)

All-but-one [AumannLindell07]

y

x
YaoYaoYaoYaoYao

Garble n copies; open random n − 1; evaluate 1

Adversary wins⇔

{
all opened circuits are good

unopened circuit is bad

⇔ Adv exactly predicts cut-choose challenge

Adversary can win with probability 1/n (too high!)

All-but-one [AumannLindell07]

y

x
YaoYaoYaoYaoYao

Garble n copies; open random n − 1; evaluate 1

Adversary wins⇔

{
all opened circuits are good

unopened circuit is bad

⇔ Adv exactly predicts cut-choose challenge

Adversary can win with probability 1/n (too high!)

Majority cut [LindellPinkas07]

yx
YaoYaoYaoYaoYao

Garble n copies

; open some random subset, evaluate others

�estions:
I Evaluate several circuits⇒ what if some of them disagree?
I How many circuits? How many to open?

Majority cut [LindellPinkas07]

yx
YaoYaoYaoYaoYao

Garble n copies; open some random subset, evaluate others

�estions:
I Evaluate several circuits⇒ what if some of them disagree?
I How many circuits? How many to open?

Majority cut [LindellPinkas07]

y

x
YaoYaoYaoYaoYao

Garble n copies; open some random subset, evaluate others

�estions:
I Evaluate several circuits⇒ what if some of them disagree?
I How many circuits? How many to open?

Majority cut [LindellPinkas07]

x

I caught you cheating!

YaoYaoYaoYaoYao

output1 output2

wrong output⇔ first bit of x is 1

Suppose evaluated circuits disagree

I Garblermust be cheating⇒ Evaluator should abort!

THIS IS INSECURE!

I Ability to detect cheating can depend on private input!
I Need another way to deal with disagreeing outputs!

Majority cut [LindellPinkas07]

x

I caught you cheating!

YaoYaoYaoYaoYao

output1 output2

wrong output⇔ first bit of x is 1

Suppose evaluated circuits disagree
I Garblermust be cheating⇒ Evaluator should abort!

THIS IS INSECURE!

I Ability to detect cheating can depend on private input!
I Need another way to deal with disagreeing outputs!

Majority cut [LindellPinkas07]

x

I caught you cheating!

YaoYaoYaoYaoYao

output1 output2

wrong output⇔ first bit of x is 1

Suppose evaluated circuits disagree
I Garblermust be cheating⇒ Evaluator should abort!

THIS IS INSECURE!

I Ability to detect cheating can depend on private input!
I Need another way to deal with disagreeing outputs!

Majority cut [LindellPinkas07]

x

I caught you cheating!

YaoYaoYaoYaoYao

output1 output2

wrong output⇔ first bit of x is 1

Suppose evaluated circuits disagree
I Garblermust be cheating⇒ Evaluator should abort!

THIS IS INSECURE!
I Ability to detect cheating can depend on private input!

I Need another way to deal with disagreeing outputs!

Majority cut [LindellPinkas07]

x

I caught you cheating!

YaoYaoYaoYaoYao

output1 output2

wrong output⇔ first bit of x is 1

Suppose evaluated circuits disagree
I Garblermust be cheating⇒ Evaluator should abort!

THIS IS INSECURE!
I Ability to detect cheating can depend on private input!
I Need another way to deal with disagreeing outputs!

Majority cut [LindellPinkas07]

x
YaoYaoYaoYaoYaoYao

Idea: Accept the majority output of evaluated circuits.

Adversary wins⇔

{
all opened circuits are good

majority of unopened circuits are bad

[ShelatShen11]: To ensure Pr[Adv wins] < 2−s :
I Generate ∼ 3.12 s circuits (replication factor)
I Open random subset of =60% of circuits
I For s = 40: generate 125 circuits and check 75

Majority cut [LindellPinkas07]

x
YaoYaoYaoYaoYaoYao

Idea: Accept the majority output of evaluated circuits.

Adversary wins⇔

{
all opened circuits are good

majority of unopened circuits are bad

[ShelatShen11]: To ensure Pr[Adv wins] < 2−s :
I Generate ∼ 3.12 s circuits (replication factor)
I Open random subset of =60% of circuits
I For s = 40: generate 125 circuits and check 75

Majority cut [LindellPinkas07]

x
YaoYaoYaoYaoYaoYao

Idea: Accept the majority output of evaluated circuits.

Adversary wins⇔

{
all opened circuits are good

majority of unopened circuits are bad

[ShelatShen11]: To ensure Pr[Adv wins] < 2−s :
I Generate ∼ 3.12 s circuits (replication factor)
I Open random subset of =60% of circuits
I For s = 40: generate 125 circuits and check 75

Majority cut pitfalls

Even with correct garbled circuits,
computation can still go wrong!

x
Yao

Yao
Yao

y1 y2 y3

(either party could use inconsistent inputs!)

Majority cut pitfalls

Even with correct garbled circuits,
computation can still go wrong!

x
Yao

Yao
Yao

y1 y2 y3

(either party could use inconsistent inputs!)

Evaluator input consistency

How to enforce input consistency for evaluator?

I Easy: use one OT for all evaluation circuits!

x
OT

OT

OT

input bit 1

input bit 2

input bit 3

wire labels for all circuits

wire labels for all circuits

wire labels for all circuits

Evaluator input consistency

How to enforce input consistency for evaluator?

I Easy: use one OT for all evaluation circuits!

x
OT

OT

OT

input bit 1

input bit 2

input bit 3

wire labels for all circuits

wire labels for all circuits

wire labels for all circuits

Garbler input consistency

How to enforce input consistency for garbler?

Idea: [ShelatShen13] compute the function (x, y) 7→ f (x, y)‖H(y)
I Evaluator checks that H(y) same for majority of circuits
I H should be collision-resistant
I H should hide y (include additional randomness in y if needed)

Can arrange for y to be commi�ed before H is chosen
I Can use simple 2-universal function H
I Example: H(y) = multiplication by random (public) 0/1-matrix
⇒ computation of H free using Free-XOR garbling

Garbler input consistency

How to enforce input consistency for garbler?

Idea: [ShelatShen13] compute the function (x, y) 7→ f (x, y)‖H(y)
I Evaluator checks that H(y) same for majority of circuits
I H should be collision-resistant
I H should hide y (include additional randomness in y if needed)

Can arrange for y to be commi�ed before H is chosen
I Can use simple 2-universal function H
I Example: H(y) = multiplication by random (public) 0/1-matrix
⇒ computation of H free using Free-XOR garbling

Majority cut pitfalls

Even with correct garbled circuits,
computation can still go wrong!

x GC

OT
x junk

Selective failure a�ack: Garbler sends bad input wire labels
. . . conditioned on receiver’s OT choice bits (her private input!)
I E.g.: junk wire label⇔ first bit of x is 1

Majority cut pitfalls

Even with correct garbled circuits,
computation can still go wrong!

x GC

OT
x junk

Selective failure a�ack: Garbler sends bad input wire labels
. . . conditioned on receiver’s OT choice bits (her private input!)
I E.g.: junk wire label⇔ first bit of x is 1

Majority cut pitfalls

Even with correct garbled circuits,
computation can still go wrong!

x GC

OT
x junk

Selective failure a�ack: Garbler sends bad input wire labels
. . . conditioned on receiver’s OT choice bits (her private input!)
I E.g.: junk wire label⇔ first bit of x is 1

Selective failure prevention

How to avoid selective failure a�ack?

Idea: [LindellPinkas07,ShelatShen13] Make OT choice bits less sensitive

I Evaluate the function
(
(x1, . . . , xk), y

)
7→ f (x1 ⊕ · · · ⊕ xk , y)

I Each input bit is secret-shared into k OT choice bits⇒ k-wise
independence!

Analysis:
I Garbler “poisons” < k OTs⇒ evaluator failure probability
independent of x

I Garbler “poisons” ≥ k OTs⇒ evaluator failure probability ≥ 1 − 2−k

Selective failure prevention

How to avoid selective failure a�ack?

Idea: [LindellPinkas07,ShelatShen13] Make OT choice bits less sensitive

I Evaluate the function
(
(x1, . . . , xk), y

)
7→ f (x1 ⊕ · · · ⊕ xk , y)

I Each input bit is secret-shared into k OT choice bits⇒ k-wise
independence!

Analysis:
I Garbler “poisons” < k OTs⇒ evaluator failure probability
independent of x

I Garbler “poisons” ≥ k OTs⇒ evaluator failure probability ≥ 1 − 2−k

Cheating punishment [Lindell13]

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

ycompute f (x, y)

�estion: Can we get security if only one evaluated circuit is good ?

Idea: [Lindell13]
I Contradictory output wire labels are proof of cheating
I However, evaulator cannot reveal whether she has such proof!

I Let her privately exchange cheating proof for garbler’s input!

Cheating punishment [Lindell13]

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

ycompute f (x, y)

�estion: Can we get security if only one evaluated circuit is good ?

Idea: [Lindell13]
I Contradictory output wire labels are proof of cheating
I However, evaulator cannot reveal whether she has such proof!

I Let her privately exchange cheating proof for garbler’s input!

Cheating punishment [Lindell13]

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

ycompute f (x, y)

�estion: Can we get security if only one evaluated circuit is good ?

Idea: [Lindell13]
I Contradictory output wire labels are proof of cheating
I However, evaulator cannot reveal whether she has such proof!

I Let her privately exchange cheating proof for garbler’s input!

Cheating punishment [Lindell13]

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

ycompute f (x, y)

�estion: Can we get security if only one evaluated circuit is good ?

Idea: [Lindell13]
I Contradictory output wire labels are proof of cheating
I However, evaulator cannot reveal whether she has such proof!
I Let her privately exchange cheating proof for garbler’s input!

Cheating punishment: details

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

ycompute f (x, y)

I Auxiliary secure computation uses majority-cut-and-choose
I Auxiliary computation depends only on input length of f
I Many many many optimizations to make aux computation small
I Must ensure same input y to both main & aux computations
I Evaluator can learn f (x, y) in two ways, but can’t reveal which!

Cheating punishment: analysis

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

y

With just one good evaluation circuit:

Case 1: All evaluation circuits agree on output

⇒ output agrees with good circuit⇒ output is correct

Case 2: Evaluation circuits disagree on output

⇒ evaluator gets proof of cheating⇒ evaluator gets correct f (x, y)

Cheating punishment: analysis

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

y

With just one good evaluation circuit:

Case 1: All evaluation circuits agree on output

⇒ output agrees with good circuit⇒ output is correct

Case 2: Evaluation circuits disagree on output

⇒ evaluator gets proof of cheating⇒ evaluator gets correct f (x, y)

Cheating punishment: analysis

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

y

With just one good evaluation circuit:

Case 1: All evaluation circuits agree on output

⇒ output agrees with good circuit⇒ output is correct

Case 2: Evaluation circuits disagree on output

⇒ evaluator gets proof of cheating⇒ evaluator gets correct f (x, y)

Cheating punishment: analysis

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

y

Adversary wins⇔

{
all opened circuits are good

all unopened circuits are bad (and agree)

⇔ Adv exactly predicts cut-choose challenge

Suppose each circuit is checked with independent probability 1/2

I With only s circuits, Pr[Adv wins] ≤ 2−s (vs. > 3s circuits)

Cheating punishment: analysis

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

y

Adversary wins⇔

{
all opened circuits are good

all unopened circuits are bad (and agree)

⇔ Adv exactly predicts cut-choose challenge

Suppose each circuit is checked with independent probability 1/2

I With only s circuits, Pr[Adv wins] ≤ 2−s (vs. > 3s circuits)

Cheating punishment: analysis

x

YaoYaoYaoYaoYaoYao

if p is proof of cheating,
then output garbler’s
input (else output ⊥)

malicious secure computation

p

y

Adversary wins⇔

{
all opened circuits are good

all unopened circuits are bad (and agree)

⇔ Adv exactly predicts cut-choose challenge

Suppose each circuit is checked with independent probability 1/2
I With only s circuits, Pr[Adv wins] ≤ 2−s (vs. > 3s circuits)

Roadmap

1 Cut-and-choose:
I Concepts & mechanisms: reducing replication factor
I Security pitfalls & challenges

2 Dual execution: security minus 1 bit of leakage

3 Batch se�ing: economies of scale for repeated computations

dual execution protocol [MohasselFranklin06]

Yao’s protocol is secure against malicious receiver

Yao

Yao

⇒ run it in both directions!

dual execution protocol [MohasselFranklin06]

Yao’s protocol is secure against malicious receiver

Yao

Yao

⇒ run it in both directions!

dual execution protocol [MohasselFranklin06]

yx

Yao
f (·, y)

nf (x, y) oB

x

Yao
f (x, ·) y

nf (x, y) oA

Eq?

yes/no

nf (x, y) oA,B�?nf (x, y) oA,Bng(x) oA,B

I Define a common garbled encoding: nz oA,B def
= nz oA ⊕ nz oB

I Malicious Bob can’t predict nz oA,B for for z , f (x, y) (authenticity)
I Malicious Bob learns whether g(x) = f (x, y): 1 bit of leakage on x
I Malicious Bob can’t make Alice accept incorrect output!

dual execution protocol [MohasselFranklin06]

yx

Yao
f (·, y)

nf (x, y) oB

x

Yao
f (x, ·) y

nf (x, y) oA

Eq?

yes/no

nf (x, y) oA,B

�?

nf (x, y) oA,B

ng(x) oA,B

I Define a common garbled encoding: nz oA,B def
= nz oA ⊕ nz oB

I Malicious Bob can’t predict nz oA,B for for z , f (x, y) (authenticity)

I Malicious Bob learns whether g(x) = f (x, y): 1 bit of leakage on x
I Malicious Bob can’t make Alice accept incorrect output!

dual execution protocol [MohasselFranklin06]

y

x

Yao
g(·)

ng(x) oB

x

Yao
f (x, ·) y

nf (x, y) oA

Eq?

yes/no

nf (x, y) oA,B

�?nf (x, y) oA,B

ng(x) oA,B

I Define a common garbled encoding: nz oA,B def
= nz oA ⊕ nz oB

I Malicious Bob can’t predict nz oA,B for for z , f (x, y) (authenticity)
I Malicious Bob learns whether g(x) = f (x, y): 1 bit of leakage on x

I Malicious Bob can’t make Alice accept incorrect output!

dual execution protocol [MohasselFranklin06]

y

x

Yao
g(·)

ng(x) oB

x

Yao
f (x, ·) y

nf (x, y) oA

Eq?

yes/no

nf (x, y) oA,B

�?

nf (x, y) oA,B

ng(x) oA,B

I Define a common garbled encoding: nz oA,B def
= nz oA ⊕ nz oB

I Malicious Bob can’t predict nz oA,B for for z , f (x, y) (authenticity)
I Malicious Bob learns whether g(x) = f (x, y): 1 bit of leakage on x
I Malicious Bob can’t make Alice accept incorrect output!

reducing leakage [KolesnikovMohasselRivaRosulek15]

reducing leakage [KolesnikovMohasselRivaRosulek15]

yx
YaoYaoYaoYao

YaoYaoYaoYao

nf (x, y) oA

nf (x, y) oBnz1 oB, nz2 oB, . . .

Main idea:
I Run s copies of Yao’s protocol in each direction

I Cut and choose: check each garbled circuit with probability 1/2.
I Garbled circuits in same direction have same output encoding
I What to do when Alice gets disagreeing outputs?

reducing leakage [KolesnikovMohasselRivaRosulek15]

yx
YaoYaoYaoYao

YaoYaoYaoYao

nf (x, y) oA

nf (x, y) oBnz1 oB, nz2 oB, . . .

Main idea:
I Run s copies of Yao’s protocol in each direction
I Cut and choose: check each garbled circuit with probability 1/2.

I Garbled circuits in same direction have same output encoding
I What to do when Alice gets disagreeing outputs?

reducing leakage [KolesnikovMohasselRivaRosulek15]

yx
YaoYaoYaoYao

YaoYaoYaoYao
nf (x, y) oA

nf (x, y) oB

nz1 oB, nz2 oB, . . .

Main idea:
I Run s copies of Yao’s protocol in each direction
I Cut and choose: check each garbled circuit with probability 1/2.
I Garbled circuits in same direction have same output encoding

I What to do when Alice gets disagreeing outputs?

reducing leakage [KolesnikovMohasselRivaRosulek15]

y

x
YaoYaoYaoYao

YaoYaoYaoYao
nf (x, y) oA

nf (x, y) oB

nz1 oB, nz2 oB, . . .

Main idea:
I Run s copies of Yao’s protocol in each direction
I Cut and choose: check each garbled circuit with probability 1/2.
I Garbled circuits in same direction have same output encoding
I What to do when Alice gets disagreeing outputs?

reconciliation technique

nz∗ oAnz∗ oB

nz1 oB, nz2 oB, . . .

SA =
{
nzi oA,B

}
i

PSI
SA SB

SA ∩ SB

I Honest parties can compute common nz∗ oA,B def
= nz∗ oB ⊕ nz∗ oA

I If disagreeing outputs, compute set of candidates
I Do private set intersection on the sets!
⇒ PSI output identifies the “correct” zi

reconciliation technique

nz∗ oA

nz∗ oB

nz1 oB, nz2 oB, . . .

SA =
{
nzi oA,B

}
i

PSI
SA SB

SA ∩ SB

I Honest parties can compute common nz∗ oA,B def
= nz∗ oB ⊕ nz∗ oA

I If disagreeing outputs, compute set of candidates

I Do private set intersection on the sets!
⇒ PSI output identifies the “correct” zi

reconciliation technique

nz∗ oA

nz∗ oB

nz1 oB, nz2 oB, . . .

SA =
{
nzi oA,B

}
i

PSI
SA SB

SA ∩ SB

I Honest parties can compute common nz∗ oA,B def
= nz∗ oB ⊕ nz∗ oA

I If disagreeing outputs, compute set of candidates
I Do private set intersection on the sets!
⇒ PSI output identifies the “correct” zi

protocol summary

x y

YaoYaoYaoYao

YaoYaoYaoYao

nz ′1 oA, nz ′2 oA, . . .

nz1 oB, nz2 oB, . . .

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

PSI
SA SB

SA ∩ SB

I s instances of Yao in each direction, check random subset

I Compute set of reconciliation values
I Private set intersection to identify correct output

protocol summary

x y

YaoYaoYaoYao

YaoYaoYaoYao
nz ′1 oA, nz ′2 oA, . . .

nz1 oB, nz2 oB, . . .

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

PSI
SA SB

SA ∩ SB

I s instances of Yao in each direction, check random subset
I Compute set of reconciliation values

I Private set intersection to identify correct output

protocol summary

x y

YaoYaoYaoYao

YaoYaoYaoYao
nz ′1 oA, nz ′2 oA, . . .

nz1 oB, nz2 oB, . . .

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

PSI
SA SB

SA ∩ SB

I s instances of Yao in each direction, check random subset
I Compute set of reconciliation values
I Private set intersection to identify correct output

protocol analysis

: corrupt Bob

x y

Yao

YaoYao

YaoYaoYao

Yao

YaoYaoYaoYao
nz ′1 oA, nz ′2 oA, . . .

nz∗ oA

z∗ = correct output

nz1 oB, nz2 oB, . . .

nz∗ oB, nz2 oB, . . .

PSI
SA SB

{nz∗ oA,B}

SA ∩ SB

{nz∗ oA,B}{nz∗ oA,B} OR ∅

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

I Bob’s only “useful” PSI input is nz∗ oA,B
I Just one good evaluation circuit⇒

PSI output leaks nothing!

I All evaluation circuits bad ⇒

PSI output leaks just 1 bit

protocol analysis: corrupt Bob

x

y

Yao

YaoYao

YaoYaoYao

Yao

YaoYaoYaoYao

nz ′1 oA, nz ′2 oA, . . .

nz∗ oA

z∗ = correct outputnz1 oB, nz2 oB, . . .

nz∗ oB, nz2 oB, . . .

PSI
SA SB

{nz∗ oA,B}

SA ∩ SB

{nz∗ oA,B}{nz∗ oA,B} OR ∅

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

I Bob’s only “useful” PSI input is nz∗ oA,B
I Just one good evaluation circuit⇒

PSI output leaks nothing!

I All evaluation circuits bad ⇒

PSI output leaks just 1 bit

protocol analysis: corrupt Bob

x

y

Yao

YaoYao

YaoYaoYao

Yao

YaoYaoYaoYao

nz ′1 oA, nz ′2 oA, . . .

nz∗ oA

z∗ = correct outputnz1 oB, nz2 oB, . . .

nz∗ oB, nz2 oB, . . .

PSI
SA

SB

{nz∗ oA,B}

SA ∩ SB

{nz∗ oA,B}{nz∗ oA,B} OR ∅

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

I Bob’s only “useful” PSI input is nz∗ oA,B

I Just one good evaluation circuit⇒

PSI output leaks nothing!

I All evaluation circuits bad ⇒

PSI output leaks just 1 bit

protocol analysis: corrupt Bob

x

y

Yao

Yao

Yao

YaoYao

Yao

Yao

YaoYaoYaoYao

nz ′1 oA, nz ′2 oA, . . .

nz∗ oA

z∗ = correct output

nz1 oB, nz2 oB, . . .

nz∗ oB, nz2 oB, . . .

PSI
SA

SB

{nz∗ oA,B}

SA ∩ SB

{nz∗ oA,B}{nz∗ oA,B} OR ∅

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

I Bob’s only “useful” PSI input is nz∗ oA,B
I Just one good evaluation circuit⇒

PSI output leaks nothing!

I All evaluation circuits bad ⇒

PSI output leaks just 1 bit

protocol analysis: corrupt Bob

x

y

Yao

Yao

Yao

YaoYao

Yao

Yao

YaoYaoYaoYao

nz ′1 oA, nz ′2 oA, . . .

nz∗ oA

z∗ = correct output

nz1 oB, nz2 oB, . . .

nz∗ oB, nz2 oB, . . .

PSI
SA

SB

{nz∗ oA,B}

SA ∩ SB

{nz∗ oA,B}

{nz∗ oA,B} OR ∅

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

I Bob’s only “useful” PSI input is nz∗ oA,B
I Just one good evaluation circuit⇒ PSI output leaks nothing!

I All evaluation circuits bad ⇒

PSI output leaks just 1 bit

protocol analysis: corrupt Bob

x

y

YaoYao

YaoYaoYao

Yao

Yao

YaoYaoYaoYao

nz ′1 oA, nz ′2 oA, . . .

nz∗ oA

z∗ = correct outputnz1 oB, nz2 oB, . . .

nz∗ oB, nz2 oB, . . .

PSI
SA

SB

{nz∗ oA,B}

SA ∩ SB

{nz∗ oA,B}{nz∗ oA,B} OR ∅

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

I Bob’s only “useful” PSI input is nz∗ oA,B
I Just one good evaluation circuit⇒ PSI output leaks nothing!

I All evaluation circuits bad ⇒

PSI output leaks just 1 bit

protocol analysis: corrupt Bob

x

y

YaoYao

YaoYaoYao

Yao

Yao

YaoYaoYaoYao

nz ′1 oA, nz ′2 oA, . . .

nz∗ oA

z∗ = correct outputnz1 oB, nz2 oB, . . .

nz∗ oB, nz2 oB, . . .

PSI
SA

SB

{nz∗ oA,B}

SA ∩ SB{nz∗ oA,B}

{nz∗ oA,B} OR ∅

SA =
{
nzi oA,B

}
i

SB =
{
nz ′i oA,B

}
i

I Bob’s only “useful” PSI input is nz∗ oA,B
I Just one good evaluation circuit⇒ PSI output leaks nothing!

I All evaluation circuits bad ⇒ PSI output leaks just 1 bit

“dual-ex+PSI” summary

s garbled circuits in each direction (can be done simultaneously)

Adversary cannot violate output correctness

Adversary learns a single bit with probability 2−s — only when:
I All opened circuits are correct
I All evaluated circuits are incorrect

Example: only 10 circuits for 0.1% chance of single-bit leakage
I all other security properties hold with overwhelming probability

Roadmap

1 Cut-and-choose:
I Concepts & mechanisms: reducing replication factor
I Security pitfalls & challenges

2 Dual execution: security minus 1 bit of leakage

3 Batch se�ing: economies of scale for repeated computations

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuitsopen and check some fraction of thempick a random “bucket” of available circuits and evaluate themAdversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuits

open and check some fraction of thempick a random “bucket” of available circuits and evaluate themAdversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuits

open and check some fraction of them

pick a random “bucket” of available circuits and evaluate themAdversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuitsopen and check some fraction of them

pick a random “bucket” of available circuits and evaluate them

Adversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuitsopen and check some fraction of them

pick a random “bucket” of available circuits and evaluate them

Adversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuitsopen and check some fraction of them

pick a random “bucket” of available circuits and evaluate them

Adversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuitsopen and check some fraction of them

pick a random “bucket” of available circuits and evaluate them

Adversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸ ︷︷ ︸
�s

generate a lot of garbled circuitsopen and check some fraction of thempick a random “bucket” of available circuits and evaluate them

Adversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution

Cut-and-choose Perspective
Big Idea: Generate many garbled circuits; check some, evaluate others

I Traditional approach (majority evaulation): 125 circuits
I Cheating punishment technique: 40 circuits
I Willing to tolerate Pr[leak 1 bit] = 0.001: 10 circuits (each direction)
I Willing to tolerate 1 bit of leakage: 2 circuits (1 in each direction)
I Evaluating same circuit many times: 3 or 4 circuits per evaluation

Other approaches:
I LEGO: [NielsenOrlandi09,FJNNO13,FJNT15] cut-and-choose on individual
gates, not circuits

I Replication factor 2 + O(s/logN) but now N = # gates
I Extra costs needed to connect gates together

I DUPLO: [KolesnikovNielsenRosulekTrieuTrifile�i17] cut-and-choose on
medium-size components (between single gate and entire circuit)

I Pool: [ZhuHuangCassel17] maintain large fixed-size collection of garbled
circuits to support unlimited number of evaluations

Cut-and-choose Perspective
Big Idea: Generate many garbled circuits; check some, evaluate others

I Traditional approach (majority evaulation): 125 circuits
I Cheating punishment technique: 40 circuits
I Willing to tolerate Pr[leak 1 bit] = 0.001: 10 circuits (each direction)
I Willing to tolerate 1 bit of leakage: 2 circuits (1 in each direction)
I Evaluating same circuit many times: 3 or 4 circuits per evaluation

Other approaches:
I LEGO: [NielsenOrlandi09,FJNNO13,FJNT15] cut-and-choose on individual
gates, not circuits

I Replication factor 2 + O(s/logN) but now N = # gates
I Extra costs needed to connect gates together

I DUPLO: [KolesnikovNielsenRosulekTrieuTrifile�i17] cut-and-choose on
medium-size components (between single gate and entire circuit)

I Pool: [ZhuHuangCassel17] maintain large fixed-size collection of garbled
circuits to support unlimited number of evaluations

