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Roadmap

1 Cut-and-choose:
I Concepts & mechanisms: reducing replication factor
I Security pitfalls & challenges

2 Dual execution: security minus 1 bit of leakage

3 Batch se�ing: economies of scale for repeated computations



Essence of cut-and-choose

How can you be sure that a garbled circuit was
generated correctly?



Opening a garbled circuit
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Seeing all input labels⇒ can check correctness of garbled gates

I (Be�er yet, give a seed to PRG that determines all input labels)

I This circuit no longer provides any privacy to computation!
I Can open/check a garbled circuit or use it for evaluation, not both!
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Essence of cut-and-choose
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Cut-and-choose approach:

1. Prepare for several independent instances of Yao’s protocol

2. Open/check some random subset of the garbled circuits
I Abort if any garbled circuits are bad!

3. Evaluate the remaining ones normally
I If all opened circuits are good, the other circuits “probably” good too

�estions:
I How many instances are needed? (replication factor) How many
should be opened?

I How to actually do this without introducing new security flaws?
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Adversary can win with probability 1/n (too high!)
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I caught you cheating!
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output1 output2

wrong output⇔ first bit of x is 1

Suppose evaluated circuits disagree

I Garblermust be cheating⇒ Evaluator should abort!

THIS IS INSECURE!

I Ability to detect cheating can depend on private input!
I Need another way to deal with disagreeing outputs!
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Idea: Accept the majority output of evaluated circuits.

Adversary wins⇔

{
all opened circuits are good

majority of unopened circuits are bad

[ShelatShen11]: To ensure Pr[Adv wins] < 2−s :
I Generate ∼ 3.12 s circuits (replication factor)
I Open random subset of =60% of circuits
I For s = 40: generate 125 circuits and check 75
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Garbler input consistency

How to enforce input consistency for garbler?

Idea: [ShelatShen13] compute the function (x, y) 7→ f (x, y)‖H(y)
I Evaluator checks that H(y) same for majority of circuits
I H should be collision-resistant
I H should hide y (include additional randomness in y if needed)

Can arrange for y to be commi�ed before H is chosen
I Can use simple 2-universal function H
I Example: H(y) = multiplication by random (public) 0/1-matrix
⇒ computation of H free using Free-XOR garbling



Garbler input consistency

How to enforce input consistency for garbler?

Idea: [ShelatShen13] compute the function (x, y) 7→ f (x, y)‖H(y)
I Evaluator checks that H(y) same for majority of circuits
I H should be collision-resistant
I H should hide y (include additional randomness in y if needed)

Can arrange for y to be commi�ed before H is chosen
I Can use simple 2-universal function H
I Example: H(y) = multiplication by random (public) 0/1-matrix
⇒ computation of H free using Free-XOR garbling



Majority cut pitfalls

Even with correct garbled circuits,
computation can still go wrong!

x GC

OT
x junk

Selective failure a�ack: Garbler sends bad input wire labels
. . . conditioned on receiver’s OT choice bits (her private input!)
I E.g.: junk wire label⇔ first bit of x is 1
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Selective failure prevention

How to avoid selective failure a�ack?

Idea: [LindellPinkas07,ShelatShen13] Make OT choice bits less sensitive

I Evaluate the function
(
(x1, . . . , xk), y

)
7→ f (x1 ⊕ · · · ⊕ xk , y)

I Each input bit is secret-shared into k OT choice bits⇒ k-wise
independence!

Analysis:
I Garbler “poisons” < k OTs⇒ evaluator failure probability
independent of x

I Garbler “poisons” ≥ k OTs⇒ evaluator failure probability ≥ 1 − 2−k
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I Contradictory output wire labels are proof of cheating
I However, evaulator cannot reveal whether she has such proof!

I Let her privately exchange cheating proof for garbler’s input!
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I Auxiliary computation depends only on input length of f
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I Evaluator can learn f (x, y) in two ways, but can’t reveal which!
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I Malicious Bob can’t predict nz oA,B for for z , f (x, y) (authenticity)
I Malicious Bob learns whether g(x) = f (x, y): 1 bit of leakage on x
I Malicious Bob can’t make Alice accept incorrect output!
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I Bob’s only “useful” PSI input is nz∗ oA,B
I Just one good evaluation circuit⇒

PSI output leaks nothing!

I All evaluation circuits bad ⇒

PSI output leaks just 1 bit
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“dual-ex+PSI” summary

s garbled circuits in each direction (can be done simultaneously)

Adversary cannot violate output correctness

Adversary learns a single bit with probability 2−s — only when:
I All opened circuits are correct
I All evaluated circuits are incorrect

Example: only 10 circuits for 0.1% chance of single-bit leakage
I all other security properties hold with overwhelming probability



Roadmap

1 Cut-and-choose:
I Concepts & mechanisms: reducing replication factor
I Security pitfalls & challenges

2 Dual execution: security minus 1 bit of leakage

3 Batch se�ing: economies of scale for repeated computations



online/o�line se�ing
Want to do 2PC of same circuit N times?
[HuangKatzKolesnikovKumaresanMalozemo�14,LindellRiva14]

X X X X X X X X X
X X X X X X X X X X
X X X X X X X X

︸       ︷︷       ︸
�s

generate a lot of garbled circuitsopen and check some fraction of thempick a random “bucket” of available circuits and evaluate themAdversary wins⇔

{
all opened circuits are good

some bucket has all/maj bad circuits

I for security 1/2s , need 2 + O(s/logN) circuits per execution
I example: N = 1024, s = 40 =⇒ only 4 circuits per execution
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Cut-and-choose Perspective
Big Idea: Generate many garbled circuits; check some, evaluate others

I Traditional approach (majority evaulation): 125 circuits
I Cheating punishment technique: 40 circuits
I Willing to tolerate Pr[leak 1 bit] = 0.001: 10 circuits (each direction)
I Willing to tolerate 1 bit of leakage: 2 circuits (1 in each direction)
I Evaluating same circuit many times: 3 or 4 circuits per evaluation

Other approaches:
I LEGO: [NielsenOrlandi09,FJNNO13,FJNT15] cut-and-choose on individual
gates, not circuits

I Replication factor 2 + O(s/logN) but now N = # gates
I Extra costs needed to connect gates together

I DUPLO: [KolesnikovNielsenRosulekTrieuTrifile�i17] cut-and-choose on
medium-size components (between single gate and entire circuit)

I Pool: [ZhuHuangCassel17] maintain large fixed-size collection of garbled
circuits to support unlimited number of evaluations
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