Garbled Circuits

Garbled circuits (recap)

Key idea: Given garbled gate + one wire label per input wire:

- ... can learn only one output label (authenticity)
- ... cannot learn truth value of labels (privacy)

Optimizing garbled circuits

Size of garbled circuits . . .

... is the most important parameter

- Applications of garbled circuits are network-bound
- Garbled circuit computations are very fast (typically hardware AES)

Today's Agenda:

Optimizations: How did garbled boolean circuits get so small?

2

New frontiers: How to garble arithmetic circuits

Position in this list leaks semantic value!

Position in this list leaks semantic value!

Position in this list leaks semantic value!

⇒ Need to randomly permute ciphertexts

Position in this list leaks semantic value!

- ⇒ Need to randomly permute ciphertexts
- ⇒ Need to **detect** [in]correct decryption

Position in this list leaks semantic value!

- ⇒ Need to randomly permute ciphertexts
- ⇒ Need to **detect** [in]correct decryption
- ⇒ Need encryption scheme with *ciphertext expansion* (size doubles)

- Assign color bits & to wire labels
- Association between $(\bullet, \bullet) \leftrightarrow (T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)

- Assign color bits & to wire labels
- ► Association between $(\bullet, \bullet) \leftrightarrow (T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys

- Assign color bits & to wire labels
- ► Association between $(\bullet, \bullet) \leftrightarrow (T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys

- Assign color bits & to wire labels
- ► Association between $(\bullet, \bullet) \leftrightarrow (T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

- Assign color bits & to wire labels
- ► Association between $(\bullet, \bullet) \leftrightarrow (T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

- Assign color bits & to wire labels
- ► Association between $(\bullet, \bullet) \leftrightarrow (T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

No need for trial decryption \Rightarrow no need for ciphertext expansion!

- Can use simple one-time encryption $\mathbb{E}_{A,B}(C) = H(A,B) \oplus C$
- H = random oracle (in practice: 1 call to AES)

Scoreboard

	size (× λ)	garble cost	eval cost	
Classical [Yao86,GMW87]	8	4	2.5	
P&P [BeaverMicaliRogaway90]	4	4	1	

Instead of choosing output wire labels uniformly . . .

 $C_0 \leftarrow \{0, 1\}^n \qquad \text{uniform} \\ C_1 = H(A_0, B_1) \qquad \dots \text{ ch}$

Instead of choosing output wire labels uniformly . . .

... choose so that first ciphertext is 0^n

(depends on colors & gate function)

 $C_0 \leftarrow \{0,1\}^n$ $C_1 = H(A_0, B_1)$

Instead of choosing output wire labels uniformly . . .

... choose so that first ciphertext is 0^n

(depends on colors & gate function)

 C_0, C_1

Instead of choosing output wire labels uniformly ...

... choose so that first ciphertext is 0^n (depends on colors & gate function)

No need to include 1st ciphertext:

 $A_0^{\bullet}, A_1^{\bullet}$

 $B_0^{\bullet}, B_1^{\bullet}$

Instead of choosing output wire labels uniformly . . .

... choose so that first ciphertext is 0^n (depends on colors & gate function)

No need to include 1st ciphertext:

 Evaluator can "reconstruct" missing ciphertext and do the usual thing:

Scoreboard

	size (× λ)	garble cost	eval cost
Classical [Yao86,GMW87]	8	4	2.5
P&P [BeaverMicaliRogaway90]	4	4	1
GRR3 [NaorPinkasSumner99]	3	4	1

Define offset of a wire ≡ XOR of its two labels

► Define **offset of a wire** = XOR of its two labels

- ▶ Define **offset of a wire** = XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ

- ▶ Define **offset of a wire** = XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ

- ▶ Define offset of a wire = XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- ► Choose FALSE output = FALSE input ⊕ FALSE input

- ▶ Define offset of a wire = XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- ► Choose FALSE output = FALSE input ⊕ FALSE input
- Evaluate by xoring input wire labels (no crypto)

- ▶ Define offset of a wire = XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- ► Choose FALSE output = FALSE input ⊕ FALSE input
- Evaluate by xoring input wire labels (no crypto)

- ▶ Define offset of a wire = XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- ► Choose FALSE output = FALSE input ⊕ FALSE input
- Evaluate by xoring input wire labels (no crypto)

Scoreboard

	size ($\times\lambda$)		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Yao86,GMW87]	8	8	4	4	2.5	2.5
P&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	0	3	0	4	0	1

Row reduction $\times 2$ [GueronLindellNofPinkas15]

Instead of choosing output wire labels uniformly, choose them so that ...

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

Row reduction $\times 2$ [GueronLindellNofPinkas15]

Instead of choosing output wire labels uniformly, choose them so that ...

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

Row reduction $\times 2$ [GueronLindellNofPinkas15]

Instead of choosing output wire labels uniformly, choose them so that ...

... first ciphertext is 0^n

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].
Row reduction $\times 2$ [GueronLindellNofPinkas15]

Instead of choosing output wire labels uniformly, choose them so that ...

- ... first ciphertext is 0^n
- ... XOR of other ciphertexts is 0^n

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

Row reduction $\times 2$ [GueronLindellNofPinkas15]

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

Scoreboard

	size ($\times\lambda$)		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Yao86,GMW87]	8	8	4	4	2.5	2.5
P&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	0	3	0	4	0	1
GRR2 [PinkasSchneiderSmartWilliams09]	2	2	2	2	1	1

Scoreboard

	size ($\times\lambda$)		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Yao86,GMW87]	8	8	4	4	2.5	2.5
P&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	0	3	0	4	0	1
GRR2 [PinkasSchneiderSmartWilliams09]	2	2	2	2	1	1

- Depending on circuit, either Free-XOR or GRR2 may be better
- Two techniques are **incompatible**! (can't guarantee $C_0 \oplus C_1 = \Delta$)

Samee Zahur, Mike Rosulek, David Evans: **Two Halves Make a Whole: Reducing Data Transfer in Garbled Circuits using Half Gates**. Eurocrypt 2015

Best of both worlds: Free-XOR + 2-ciphertext AND

$$A, A \oplus \Delta$$

$$B, B \oplus \Delta$$

$$C, C \oplus \Delta$$

$$\begin{array}{c} A \\ \hline B, B \oplus \Delta \end{array} \begin{array}{c} C, C \oplus \Delta \end{array}$$

$$\underbrace{A \oplus \Delta}_{B, B \oplus \Delta} C, C \oplus \Delta$$

What if garbler knows in advance the truth value on one input wire?

Fine print: permute ciphertexts with permute-and-point.

$$\underbrace{A, A \oplus \Delta}_{B, B \oplus \Delta} \underbrace{C, C \oplus \Delta}_{C, C \oplus \Delta}$$

What if evaluator knows in advance the truth value on one input wire?

$$A, A \oplus \Delta$$

$$B$$

$$C, C \oplus \Delta$$

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain *C* (FALSE)

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain *C* (FALSE)

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

Evaluator has $B \oplus \Delta$ (knows true):

 \Rightarrow should obtain *C* (FALSE)

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):

⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "*a*" wire to "*c*" wire
 - Suffices to learn $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - Suffices to learn $A \oplus C$

Fine print: no need for permute-and-point here

Two halves make a whole!

 $a \wedge b$
$a \wedge b = (a \oplus r \oplus r) \wedge b$

Garbler chooses random bit r

$a \wedge b = (a \oplus r \oplus r) \wedge b$ = $[(a \oplus r) \wedge b] \oplus [r \wedge b]$

Garbler chooses random bit r

$a \wedge b = (a \oplus r \oplus r) \wedge b$ = $[(a \oplus r) \wedge b] \oplus [r \wedge b]$

Garbler chooses random bit r

• Arrange for evaluator to learn $a \oplus r$ in the clear

one input known to evaluator

- Garbler chooses random bit r
- Arrange for evaluator to learn $a \oplus r$ in the clear

$a \wedge b = (a \oplus r \oplus r) \wedge b$ $= [(a \oplus r) \wedge b] \oplus \underbrace{[r \wedge b]}_{}$

one input known to garbler

- Garbler chooses random bit r
- Arrange for evaluator to learn $a \oplus r$ in the clear

$a \wedge b = (a \oplus r \oplus r) \wedge b$ $= [(a \oplus r) \wedge b] \oplus \underbrace{[r \wedge b]}_{}$

one input known to garbler

- Garbler chooses random bit r
- Arrange for evaluator to learn $a \oplus r$ in the clear
- Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

$a \wedge b = (a \oplus r \oplus r) \wedge b$ $= [(a \oplus r) \wedge b] \oplus \underbrace{[r \wedge b]}_{}$

one input known to garbler

- Garbler chooses random bit r
 - r = color bit of FALSE wire label A
- Arrange for evaluator to learn $a \oplus r$ in the clear
 - $a \oplus r = \text{color bit of wire label evaluator gets } (A \text{ or } A \oplus \Delta)$
- Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

Scoreboard

	size ($\times\lambda$)		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Yao86,GMW87]	8	8	4	4	2.5	2.5
P&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	0	3	0	4	0	1
GRR2 [PinkasSchneiderSmartWilliams09]	2	2	2	2	1	1
Half gates [ZahurRosulekEvans15]	0	2	0	4	0	2

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

YES [BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can't garble an AND gate with < 2 ciphertexts

Can garble an AND gate with 1 ciphertext

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts...

... using "standard techniques"

YES [BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can garble an AND gate with 1 ciphertext

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts...

... using "standard techniques"

YES [BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can garble an AND gate with 1 ciphertext...

 \dots but not in context of a larger circuit \circledast

Can we do better than half-gates? in any useful way?

NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts...

... using "standard techniques"

YES [BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can garble an AND gate with 1 ciphertext...

 \dots but not in context of a larger circuit \circledast

Roadmap

12

Optimizations: How did garbled boolean circuits get so small?

New frontiers: How to garble arithmetic circuits

Roadmap

Optimizations: How did garbled boolean circuits get so small?

2

New frontiers: How to garble *arithmetic* circuits [BallMalkinRosulek16]

Free XOR:

Wire carries a *truth value* from $\{0, 1\}$

Wire labels are bit strings $\{0, 1\}^{\lambda}$.

Global wire-label-offset $\Delta \in \{0, 1\}^{\lambda}$

FALSE wire label is A true wire label is $A \oplus \Delta$

Free XOR:

Wire carries a *truth value* from $\{0, 1\}$

Wire labels are bit strings $\{0, 1\}^{\lambda}$.

Global wire-label-offset $\Delta \in \{0, 1\}^{\lambda}$

FALSE wire label is A true wire label is $A \oplus \Delta$

Generalized Free XOR:

Wire carries a *truth value* from \mathbb{Z}_m

Free XOR:

Wire carries a *truth value* from $\{0, 1\}$

Wire labels are bit strings $\{0, 1\}^{\lambda}$.

Global wire-label-offset $\Delta \in \{0, 1\}^{\lambda}$

FALSE wire label is A true wire label is $A \oplus \Delta$

Generalized Free XOR:

Wire carries a *truth value* from \mathbb{Z}_m

Wire labels are tuples $(\mathbb{Z}_m)^{\lambda}$.

Global wire-label-offset $\Delta \in (\mathbb{Z}_m)^{\lambda}$

Free XOR:

Wire carries a *truth value* from $\{0, 1\}$

Wire labels are bit strings $\{0, 1\}^{\lambda}$.

Global wire-label-offset $\Delta \in \{0, 1\}^{\lambda}$

FALSE wire label is A true wire label is $A \oplus \Delta$

Generalized Free XOR:

Wire carries a *truth value* from \mathbb{Z}_m

Wire labels are tuples $(\mathbb{Z}_m)^{\lambda}$.

Global wire-label-offset $\Delta \in (\mathbb{Z}_m)^{\lambda}$

Wire label encoding truth value $a \in \mathbb{Z}_m$ is $A + a\Delta$

Free XOR:

Wire carries a *truth value* from $\{0, 1\}$

Wire labels are bit strings $\{0, 1\}^{\lambda}$.

Global wire-label-offset $\Delta \in \{0, 1\}^{\lambda}$

FALSE wire label is A true wire label is $A \oplus \Delta$

 \oplus is componentwise addition mod 2

Generalized Free XOR:

Wire carries a *truth value* from \mathbb{Z}_m

Wire labels are tuples $(\mathbb{Z}_m)^{\lambda}$.

Global wire-label-offset $\Delta \in (\mathbb{Z}_m)^{\lambda}$

Wire label encoding truth value $a \in \mathbb{Z}_m$ is $A + a\Delta$

+ is componentwise addition mod m

Idea: Truth value $a \in \mathbb{Z}_m$ encoded by wire label $A + a\Delta \in (\mathbb{Z}_m)^{\lambda}$

Idea: Truth value $a \in \mathbb{Z}_m$ encoded by wire label $A + a\Delta \in (\mathbb{Z}_m)^{\lambda}$

Idea: Truth value $a \in \mathbb{Z}_m$ encoded by wire label $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$

$$\xrightarrow{A + a\Delta} (A + B) + (a + b)\Delta$$

Evaulator can simply add wire labels

Idea: Truth value $a \in \mathbb{Z}_m$ encoded by wire label $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$

Evaulator can simply add wire labels \Rightarrow free garbled addition mod *m*

Idea: Truth value $a \in \mathbb{Z}_m$ encoded by wire label $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$

Evaulator can simply add wire labels \Rightarrow free garbled addition mod *m*

Free multiplication by public constant *c*, if gcd(c, m) = 1

• Different "preferred modulus" on each wire \Rightarrow different offsets Δ

• Different "preferred modulus" on each wire \Rightarrow different offsets Δ

$$\begin{array}{c} \text{labels } \{A + a\Delta_m\}_{a \in \mathbb{Z}_m} & \qquad \text{labels } \{C + c\Delta_\ell\}_{c \in \mathbb{Z}_\ell} \\ \hline \text{truth value } \in \mathbb{Z}_m & \qquad \text{truth value } \in \mathbb{Z}_\ell \\ \hline H(A &) + C + \phi(0)\Delta_\ell \\ H(A + \Delta_m) + C + \phi(1)\Delta_\ell \\ H(A + 2\Delta_m) + C + \phi(2)\Delta_\ell \\ \vdots \end{array}$$

- ▶ Different "preferred modulus" on each wire \Rightarrow different offsets Δ
- Cost: m ciphertexts
- Generalized point-and-permute: "color bit" from \mathbb{Z}_m

$$\begin{array}{c} \text{labels } \{A + a\Delta_m\}_{a \in \mathbb{Z}_m} & \qquad \text{labels } \{C + c\Delta_\ell\}_{c \in \mathbb{Z}_\ell} \\ \hline \text{truth value } \in \mathbb{Z}_m & \qquad \text{truth value } \in \mathbb{Z}_\ell \\ \hline H(A &) + C + \phi(0)\Delta_\ell \\ H(A + \Delta_m) + C + \phi(1)\Delta_\ell \\ H(A + 2\Delta_m) + C + \phi(2)\Delta_\ell \\ \vdots \\ \end{array}$$

- ▶ Different "preferred modulus" on each wire \Rightarrow different offsets Δ
- Cost: m ciphertexts (m 1 using standard row reduction)
- ▶ Generalized point-and-permute: "color bit" from Z_m

Generalized garbling tools

We can efficiently garble any computation/circuit where:

- Each wire has a preferred modulus \mathbb{Z}_m
 - \Rightarrow Wire-label-offset Δ_m global to all \mathbb{Z}_m -wires
- Addition gates: all wires touching gate have same modulus
 Garbling cost: free
- Mult-by-constant gates: input/output wires have same modulus
 Garbling cost: free
- Unary gates: \mathbb{Z}_m input and \mathbb{Z}_ℓ output
 - \Rightarrow Garbling cost: m 1 ciphertexts

Generalized garbling tools

We can efficiently garble any computation/circuit where:

- Each wire has a preferred modulus \mathbb{Z}_m
 - \Rightarrow Wire-label-offset Δ_m global to all \mathbb{Z}_m -wires
- Addition gates: all wires touching gate have same modulus
 Garbling cost: free
- Mult-by-constant gates: input/output wires have same modulus
 Garbling cost: free
- Unary gates: \mathbb{Z}_m input and \mathbb{Z}_ℓ output
 - \Rightarrow Garbling cost: m 1 ciphertexts

Better basis for many computations than traditional boolean circuits!

Example Scenario

Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are **addition**, **multiplication**, etc

Example Scenario

Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are **addition**, **multiplication**, etc

"Standard approach"

- Represent 32-bit integers in binary
- Build circuit from boolean addition/multiplication subcircuits
- Garble with half-gates (AND costs 2, XOR costs 0)

Example Scenario

Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are **addition**, **multiplication**, etc

"Standard approach"

- Represent 32-bit integers in binary
- Build circuit from boolean addition/multiplication subcircuits
- Garble with half-gates (AND costs 2, XOR costs 0)

	cost (# ciphertexts)
addition	62
multiplication by public constant	758
multiplication	1200
squaring, cubing, etc	1864

Using generalized garbling techniques:

 $\blacktriangleright\,$ Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$
Using generalized garbling techniques:

- Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	
squaring, cubing, etc	1864	

Using generalized garbling techniques:

- Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free
- Multiplication mod *m* costs 2*m* 2 ciphertexts (generalization of half-gates)

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	
squaring, cubing, etc	1864	

Using generalized garbling techniques:

- Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free
- Multiplication mod *m* costs 2*m* 2 ciphertexts (generalization of half-gates)

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	8589934590
squaring, cubing, etc	1864	4294967295

instead of $\mathbb{Z}_{4294967296}$ use $\mathbb{Z}_{6469693230}$

instead of
$$\mathbb{Z}_{4294967296} = \mathbb{Z}_{2^{32}}$$

 \downarrow
use $\mathbb{Z}_{6469693230}$

instead of
$$\mathbb{Z}_{4294967296} = \mathbb{Z}_{2^{32}}$$

 \downarrow
use $\mathbb{Z}_{6469693230} = \mathbb{Z}_{2\cdot3\cdot5\cdot7\cdots29}$

CRT residue number system!

- Generalized garbling scheme supports many moduli in same circuit
- Represent 32-bit integer x as (x % 2, x % 3, x % 5, ..., x % 29)
- Do all arithmetic in each residue (each with small modulus)

	standard	madness	
addition	62	0	
mult by public constant	758	0	
multiplication	1200	25769803776	
squaring, cubing, etc	1864	4294967296	

CRT residue number system!

- Generalized garbling scheme supports many moduli in same circuit
- Represent 32-bit integer x as (x % 2, x % 3, x % 5,..., x % 29)
- Do all arithmetic in each residue (each with small modulus)

	standard	madness	CRT
addition	62	0	0
mult by public constant	758	0	0
multiplication	1200	25769803776	238 $\approx 2(2+3+5+$
squaring, cubing, etc	1864	4294967296	119

Challenges:

State of the art:

"If values are represented in CRT form then garbled operations are cheap."

Challenges:

State of the art:

"If values are represented in CRT form then garbled operations are cheap."

But doesn't it cost something to get values into CRT form??

Not so good:

- Converting from binary to CRT
- Getting CRT values into the circuit via OT

Kinda bad: (room for improvement)

- Comparing two CRT-encoded values
- Converting from CRT to binary
- Integer division
- Modular reduction different than the CRT composite modulus (e.g., garbled RSA)

Converting to CRT

Claim:

It's **not hard** to convert into CRT representation $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$

Converting to CRT

Claim:

It's **not hard** to convert into CRT representation $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$

From binary $b_n b_{n-1} \cdots b_1 b_0$:

- For all *i*, *j*, use unary gate $b_i \mapsto b_i \pmod{p_j}$ (1 ciphertext each)
- For all *j*, add to obtain $\sum_i b_i 2^i \pmod{p_j}$ (free)
- Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

Converting to CRT

Claim:

It's **not hard** to convert into CRT representation $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$

From binary $b_n b_{n-1} \cdots b_1 b_0$:

- For all *i*, *j*, use unary gate $b_i \mapsto b_i \pmod{p_j}$ (1 ciphertext each)
- For all *j*, add to obtain $\sum_i b_i 2^i \pmod{p_j}$ (free)
- ► Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

At the input level (e.g., OTs in Yao): (similar to [Gilboa99,KellerOrsiniScholl16])

- Outside of the circuit, convert plaintext input into CRT form
- Convert \mathbb{Z}_{p_i} -residue to binary, and transfer it using $\lceil \log p_j \rceil$ OTs
- ► Total cost: $\sum_{j} \log p_j$ OTs (e.g., 37 OTs for 32-bit values)

CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$:

0000	0
1111	1
2220	2
3301	3
$4\ 4\ 1\ 0$	4
5021	5
6100	6
0211	7
÷	÷
1421	29
2000	30
:	÷

CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$:

$0 \ 0 \ 0 \ 0$	0
1111	1
2220	2
3301	3
4410	4
5021	5
6100	6
0211	7
÷	÷
1421	29
$2\ 0\ 0\ 0$	30
:	:

Theorem

CRT representation sucks for comparisons!

CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$:

$0 \ 0 \ 0 \ 0$	0	0	0
1111	1	1	1
2220	2	10	2
3301	3	11	3
$4 \ 4 \ 1 \ 0$	4	2 0	4
5021	5	2 1	5
6100	6	100	6
0211	7	101	7
÷	:	:	÷
1421	29	421	29
$2\ 0\ 0\ 0$	30	1000	30
÷	:	÷	÷

CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$: Primorial Mixed Radix (PMR)

0000	0	0	0
1111	1	1	1
2220	2	10	2
3301	3	11	3
4410	4	2 0	4
5021	5	2 1	5
6100	6	100	6
0211	7	101	7
÷	:	:	÷
1421	29	421	29
$2\ 0\ 0\ 0$	30	1000	30
:	:	:	÷

Approach for comparisons CRT values given Convert both CRT values to PMR Compare PMR (simple $L \rightarrow R$ scan)

Approach for comparisons CRT values given ↓

Convert both CRT values to PMR

Simple building block:

$$(x\%p, x\%q) \mapsto \left\lfloor \frac{x}{p} \right\rfloor \%q$$

allows you to compute PMR representation of x:

$$\dots, \quad \left\lfloor \frac{x}{2 \cdot 3 \cdot 5} \right\rfloor \% 7, \quad \left\lfloor \frac{x}{2 \cdot 3} \right\rfloor \% 5, \quad \left\lfloor \frac{x}{2} \right\rfloor \% 3, \quad \lfloor x \rfloor \% 2$$

Compare PMR (simple
$$L \rightarrow R$$
 scan)

 $(x\%p, x\%q) \mapsto |x/p| \%q$ 3 4 5 6 7 8 9 10 11 X 1 2 12 13 14 x % 3 1 2 **x** % 5

[x/3] % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

$$(x\%p, x\%q) \mapsto [x/p] \%q \xrightarrow{x \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14} \xrightarrow{x\%3} \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 3 \ 4} \xrightarrow{x\%5} \ 0 \ 1 \ 2 \ 3 \ 4 \ 0 \ 1 \ 2 \ 3 \ 4 \ 0 \ 1 \ 2 \ 3 \ 4} \xrightarrow{x\%3-x\%5} \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 4 \ 4 \ 4}$$

1. Subtract *x*%3 – *x*%5

1. Subtract *x*%3 – *x*%5

2. Result has the same "constant segments" as what we want

(x	% <i>p</i> , <i>x</i> % <i>q</i>))	⊢	\rightarrow		_X	/	<i>p</i> _		%	q					
	X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
	x % 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
	x %3 - x %5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
	(x%3 - x%5)%7	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
	[x/3] % 5	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract $x\%3 - x\%5 \pmod{7}$ is fine)

2. Result has the same "constant segments" as what we want

$(x\%p, x\%q) \mapsto$	$\rightarrow \lfloor x/p \rfloor \% q$
------------------------	--

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
x % 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
x %3 - x %5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
(x %3 - x %5)%7	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
[x/3] % 5	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract $x\%3 - x\%5 \pmod{7}$ is fine)

- "Project" x%3 and x%5 to \mathbb{Z}_7 wires
- Subtract mod 7 for free
- 2. Result has the same "constant segments" as what we want

(<i>x</i> % <i>p</i> ,	$x\%q)\mapsto$	$\lfloor x/p \rfloor$	% q
-------------------------	----------------	-----------------------	-----

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
x % 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
x %3 - x %5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
(x%3 - x%5)%7	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
[x/3] % 5	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract $x\%3 - x\%5 \pmod{7}$ is fine)

- "Project" x%3 and x%5 to \mathbb{Z}_7 wires
- Subtract mod 7 for free
- 2. Result has the same "constant segments" as what we want
 - Apply unary projection:

 $0 \mapsto 0 \qquad 2 \mapsto 1 \qquad 4 \mapsto 1 \qquad 6 \mapsto 2$

 $1 \mapsto 3$ $3 \mapsto 3$ $5 \mapsto 4$

Approach for comparisons

- 1. General $(x \gg p, x \gg q) \mapsto \lfloor x/p \rfloor \gg q$ gadget costs ~ 2p + 2q ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost $O(k^3)$ for *k*-bit integers

Approach for comparisons

- 1. General $(x \gg p, x \gg q) \mapsto \lfloor x/p \rfloor \gg q$ gadget costs ~ 2p + 2q ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost $O(k^3)$ for *k*-bit integers

Operations on 32-bit integers:

	boolean	CRT
addition	62	0
multiplication by public constant	758	0
multiplication	1200	238
squaring, cubing, etc	1864	119
comparison	64	2541