
Garbled Circuits
Mike Rosulek

crypt@b-it 2018

.
.
.
.
.
.
.
.

Garbled circuits (recap)
A0,A1

B0,B1

C0,C1

D0,D1

E0, E1

F0, F1

G0,G1
H0,H1

I0, I1

EA0,B0
(E0)

EA0,B1
(E1)

EA1,B0
(E0)

EA1,B1
(E0)

EA0,B0
(F0)

EA0,B1
(F1)

EA1,B0
(F1)

EA1,B1
(F0)

EC0,D0
(G0)

EC0,D1
(G1)

EC1,D0
(G0)

EC1,D1
(G0)

EF0,G0
(H0)

EF0,G1
(H1)

EF1,G0
(H0)

EF1,G1
(H0)

EE0,H0
(I0)

EE0,H1
(I1)

EE1,H0
(I1)

EE1,H1
(I1)

Key idea: Given garbled gate + one wire label per input wire:

. . . can learn only one output label (authenticity)

. . . cannot learn truth value of labels (privacy)

.
.
.
.
.
.
.
.

Optimizing garbled circuits

Size of garbled circuits . . .

. . . is the most important parameter
▶ Applications of garbled circuits are network-bound
▶ Garbled circuit computations are very fast (typically hardware AES)

.
.
.
.
.
.
.
.

Today’s Agenda:

1 Optimizations: How did garbled boolean circuits get so small?

1λ

2λ

3λ

4λ

5λ

bi
ts

pe
r
ga

te

1986 1990 1999 2008 2009 2014 2015

[BeaverMicaliRogaway]

[NaorPinkasSumner]

[KolesnikovSchneider]

[PinkasSchneiderSmartWilliams]

[KolesnikovMohasselRosulek]

[ZahurRosulekEvans]
[Yao,GoldreichMicaliWigderson]

DES

AES
SHA1
SHA256

2 New frontiers: How to garble arithmetic circuits

.
.
.
.
.
.
.
.

Ciphertext expansion [Yao86]

A0,A1

B0,B1

C0,C1

EA0,B0
(C0)

EA0,B1
(C1)

EA1,B0
(C0)

EA1,B1
(C0)

Position in this list leaks semantic value!

⇒ Need to randomly permute ciphertexts

⇒ Need to detect [in]correct decryption
⇒ Need encryption scheme with ciphertext expansion (size doubles)

.
.
.
.
.
.
.
.

Ciphertext expansion [Yao86]

A0,A1

B0,B1

C0,C1

EA0,B0
(C0)

EA0,B1
(C1)

EA1,B0
(C0)

EA1,B1
(C0)

Position in this list leaks semantic value!

⇒ Need to randomly permute ciphertexts

⇒ Need to detect [in]correct decryption
⇒ Need encryption scheme with ciphertext expansion (size doubles)

.
.
.
.
.
.
.
.

Ciphertext expansion [Yao86]

A0,A1

B0,B1

C0,C1

EA0,B0
(C0)

EA0,B1
(C1)

EA1,B0
(C0)

EA1,B1
(C0)

Position in this list leaks semantic value!

⇒ Need to randomly permute ciphertexts

⇒ Need to detect [in]correct decryption
⇒ Need encryption scheme with ciphertext expansion (size doubles)

.
.
.
.
.
.
.
.

Ciphertext expansion [Yao86]

A0,A1

B0,B1

C0,C1

EA0,B0
(C0)

EA0,B1
(C1)

EA1,B0
(C0)

EA1,B1
(C0)

Position in this list leaks semantic value!

⇒ Need to randomly permute ciphertexts

⇒ Need to detect [in]correct decryption

⇒ Need encryption scheme with ciphertext expansion (size doubles)

.
.
.
.
.
.
.
.

Ciphertext expansion [Yao86]

A0,A1

B0,B1

C0,C1

EA0,B0
(C0)

EA0,B1
(C1)

EA1,B0
(C0)

EA1,B1
(C0)

Position in this list leaks semantic value!

⇒ Need to randomly permute ciphertexts

⇒ Need to detect [in]correct decryption
⇒ Need encryption scheme with ciphertext expansion (size doubles)

.
.
.
.
.
.
.
.

Point-and-permute [BeaverMicaliRogaway90]

A

•

0,A

•

1

B

•

0,B

•

1

C

•

0,C

•

1

••

EA

•

0,B

•

0
(C

•

0)

••

EA

•

0,B

•

1
(C

•

1)

••

EA

•

1,B

•

0
(C

•

0)

••

EA

•

1,B

•

1
(C

•

0)

•• EA

•

0,B

•

1
(C

•

1)
•• EA

•

0,B

•

0
(C

•

0)
•• EA

•

1,B

•

1
(C

•

0)
•• EA

•

1,B

•

0
(C

•

0)

•• H(A0,B1) ⊕ C1

•• H(A0,B0) ⊕ C0

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C0

▶ Assign color bits • & • to wire labels
▶ Association between (•, •)↔ (T, F) is

random for each wire
▶ A wire label reveals its own color (e.g.,

as last bit)
▶ Order the 4 ciphertexts canonically, by

color of keys
▶ Evaluate by decrypting ciphertext

indexed by your colors

No need for trial decryption⇒ no need for ciphertext expansion!
▶ Can use simple one-time encryption EA,B(C) = H(A,B) ⊕ C
▶ H = random oracle (in practice: 1 call to AES)

.
.
.
.
.
.
.
.

Point-and-permute [BeaverMicaliRogaway90]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

••

EA•0,B•0(C
•
0)

••

EA•0,B•1(C
•
1)

••

EA•1,B•0(C
•
0)

••

EA•1,B•1(C
•
0)

•• EA•0,B•1(C
•
1)

•• EA•0,B•0(C
•
0)

•• EA•1,B•1(C
•
0)

•• EA•1,B•0(C
•
0)

•• H(A0,B1) ⊕ C1

•• H(A0,B0) ⊕ C0

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C0

▶ Assign color bits • & • to wire labels
▶ Association between (•, •)↔ (T, F) is

random for each wire
▶ A wire label reveals its own color (e.g.,

as last bit)

▶ Order the 4 ciphertexts canonically, by
color of keys

▶ Evaluate by decrypting ciphertext
indexed by your colors

No need for trial decryption⇒ no need for ciphertext expansion!
▶ Can use simple one-time encryption EA,B(C) = H(A,B) ⊕ C
▶ H = random oracle (in practice: 1 call to AES)

.
.
.
.
.
.
.
.

Point-and-permute [BeaverMicaliRogaway90]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

•• EA

•

0,B

•

0
(C•0)

•• EA

•

0,B

•

1
(C•1)

•• EA

•

1,B

•

0
(C•0)

•• EA

•

1,B

•

1
(C•0)

•• EA

•

0,B

•

1
(C•1)

•• EA

•

0,B

•

0
(C•0)

•• EA

•

1,B

•

1
(C•0)

•• EA

•

1,B

•

0
(C•0)

•• H(A0,B1) ⊕ C1

•• H(A0,B0) ⊕ C0

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C0

▶ Assign color bits • & • to wire labels
▶ Association between (•, •)↔ (T, F) is

random for each wire
▶ A wire label reveals its own color (e.g.,

as last bit)
▶ Order the 4 ciphertexts canonically, by

color of keys

▶ Evaluate by decrypting ciphertext
indexed by your colors

No need for trial decryption⇒ no need for ciphertext expansion!
▶ Can use simple one-time encryption EA,B(C) = H(A,B) ⊕ C
▶ H = random oracle (in practice: 1 call to AES)

.
.
.
.
.
.
.
.

Point-and-permute [BeaverMicaliRogaway90]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

•• EA

•

0,B

•

0
(C•0)

•• EA

•

0,B

•

1
(C•1)

•• EA

•

1,B

•

0
(C•0)

•• EA

•

1,B

•

1
(C•0)

•• EA

•

0,B

•

1
(C•1)

•• EA

•

0,B

•

0
(C•0)

•• EA

•

1,B

•

1
(C•0)

•• EA

•

1,B

•

0
(C•0)

•• H(A0,B1) ⊕ C1

•• H(A0,B0) ⊕ C0

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C0

▶ Assign color bits • & • to wire labels
▶ Association between (•, •)↔ (T, F) is

random for each wire
▶ A wire label reveals its own color (e.g.,

as last bit)
▶ Order the 4 ciphertexts canonically, by

color of keys

▶ Evaluate by decrypting ciphertext
indexed by your colors

No need for trial decryption⇒ no need for ciphertext expansion!
▶ Can use simple one-time encryption EA,B(C) = H(A,B) ⊕ C
▶ H = random oracle (in practice: 1 call to AES)

.
.
.
.
.
.
.
.

Point-and-permute [BeaverMicaliRogaway90]

A

•

0,A
•
1

B

•

0,B
•
1

C

•

0,C

•

1

•• EA

•

0,B

•

0
(C•0)

•• EA

•

0,B

•

1
(C•1)

•• EA

•

1,B

•

0
(C•0)

•• EA

•

1,B

•

1
(C•0)

•• EA

•

0,B

•

1
(C

•

1)
•• EA

•

0,B

•

0
(C

•

0)
•• EA

•

1,B

•

1
(C

•

0)
•• EA

•

1,B

•

0
(C

•

0)

•• H(A0,B1) ⊕ C1

•• H(A0,B0) ⊕ C0

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C0

▶ Assign color bits • & • to wire labels
▶ Association between (•, •)↔ (T, F) is

random for each wire
▶ A wire label reveals its own color (e.g.,

as last bit)
▶ Order the 4 ciphertexts canonically, by

color of keys
▶ Evaluate by decrypting ciphertext

indexed by your colors

No need for trial decryption⇒ no need for ciphertext expansion!
▶ Can use simple one-time encryption EA,B(C) = H(A,B) ⊕ C
▶ H = random oracle (in practice: 1 call to AES)

.
.
.
.
.
.
.
.

Point-and-permute [BeaverMicaliRogaway90]

A

•

0,A
•
1

B

•

0,B
•
1

C•0,C

•

1

•• EA

•

0,B

•

0
(C•0)

•• EA

•

0,B

•

1
(C•1)

•• EA

•

1,B

•

0
(C•0)

•• EA

•

1,B

•

1
(C•0)

•• EA

•

0,B

•

1
(C

•

1)
•• EA

•

0,B

•

0
(C

•

0)
•• EA

•

1,B

•

1
(C•0)

•• EA

•

1,B

•

0
(C

•

0)

•• H(A0,B1) ⊕ C1

•• H(A0,B0) ⊕ C0

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C0

▶ Assign color bits • & • to wire labels
▶ Association between (•, •)↔ (T, F) is

random for each wire
▶ A wire label reveals its own color (e.g.,

as last bit)
▶ Order the 4 ciphertexts canonically, by

color of keys
▶ Evaluate by decrypting ciphertext

indexed by your colors

No need for trial decryption⇒ no need for ciphertext expansion!
▶ Can use simple one-time encryption EA,B(C) = H(A,B) ⊕ C
▶ H = random oracle (in practice: 1 call to AES)

.
.
.
.
.
.
.
.

Point-and-permute [BeaverMicaliRogaway90]

A

•

0,A
•
1

B

•

0,B
•
1

C•0,C

•

1

•• EA

•

0,B

•

0
(C•0)

•• EA

•

0,B

•

1
(C•1)

•• EA

•

1,B

•

0
(C•0)

•• EA

•

1,B

•

1
(C•0)

•• EA

•

0,B

•

1
(C

•

1)
•• EA

•

0,B

•

0
(C

•

0)
•• EA

•

1,B

•

1
(C•0)

•• EA

•

1,B

•

0
(C

•

0)

•• H(A0,B1) ⊕ C1

•• H(A0,B0) ⊕ C0

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C0

▶ Assign color bits • & • to wire labels
▶ Association between (•, •)↔ (T, F) is

random for each wire
▶ A wire label reveals its own color (e.g.,

as last bit)
▶ Order the 4 ciphertexts canonically, by

color of keys
▶ Evaluate by decrypting ciphertext

indexed by your colors

No need for trial decryption⇒ no need for ciphertext expansion!
▶ Can use simple one-time encryption EA,B(C) = H(A,B) ⊕ C
▶ H = random oracle (in practice: 1 call to AES)

.
.
.
.
.
.
.
.

Scoreboard

size (×λ) garble cost eval cost
Classical [Yao86,GMW87] 8 4 2.5
P&P [BeaverMicaliRogaway90] 4 4 1

.
.
.
.
.
.
.
.

Garbled Row Reduction [NaorPinkasSumner99]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 ← {0, 1}n

•• H(A0,B1) ⊕ C•1
•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly . . .

. . . choose so that first ciphertext is 0n

(depends on colors & gate function)

No need to include 1st ciphertext:
▶ Evaluator can “reconstruct” missing

ciphertext and do the usual thing:

•• G2

•• G3

•• G4

⇒
•• 0n

•• G2

•• G3

•• G4

.
.
.
.
.
.
.
.

Garbled Row Reduction [NaorPinkasSumner99]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 ← {0, 1}n

•• H(A0,B1) ⊕ C•1
•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly . . .

. . . choose so that first ciphertext is 0n

(depends on colors & gate function)

No need to include 1st ciphertext:
▶ Evaluator can “reconstruct” missing

ciphertext and do the usual thing:

•• G2

•• G3

•• G4

⇒
•• 0n

•• G2

•• G3

•• G4

.
.
.
.
.
.
.
.

Garbled Row Reduction [NaorPinkasSumner99]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 = H(A0,B1)

•• H(A0,B1) ⊕ C•1
•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly . . .

. . . choose so that first ciphertext is 0n

(depends on colors & gate function)

No need to include 1st ciphertext:
▶ Evaluator can “reconstruct” missing

ciphertext and do the usual thing:

•• G2

•• G3

•• G4

⇒
•• 0n

•• G2

•• G3

•• G4

.
.
.
.
.
.
.
.

Garbled Row Reduction [NaorPinkasSumner99]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 = H(A0,B1)

•• 0n

•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly . . .

. . . choose so that first ciphertext is 0n

(depends on colors & gate function)

No need to include 1st ciphertext:
▶ Evaluator can “reconstruct” missing

ciphertext and do the usual thing:

•• G2

•• G3

•• G4

⇒
•• 0n

•• G2

•• G3

•• G4

.
.
.
.
.
.
.
.

Garbled Row Reduction [NaorPinkasSumner99]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 = H(A0,B1)

•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly . . .

. . . choose so that first ciphertext is 0n

(depends on colors & gate function)

No need to include 1st ciphertext:

▶ Evaluator can “reconstruct” missing
ciphertext and do the usual thing:

•• G2

•• G3

•• G4

⇒
•• 0n

•• G2

•• G3

•• G4

.
.
.
.
.
.
.
.

Garbled Row Reduction [NaorPinkasSumner99]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 = H(A0,B1)

•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly . . .

. . . choose so that first ciphertext is 0n

(depends on colors & gate function)

No need to include 1st ciphertext:
▶ Evaluator can “reconstruct” missing

ciphertext and do the usual thing:

•• G2

•• G3

•• G4

⇒
•• 0n

•• G2

•• G3

•• G4

.
.
.
.
.
.
.
.

Scoreboard

size (×λ) garble cost eval cost
Classical [Yao86,GMW87] 8 4 2.5
P&P [BeaverMicaliRogaway90] 4 4 1
GRR3 [NaorPinkasSumner99] 3 4 1

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A0,A1

B0,B1

C0,C1

C← {0, 1}n

A︸ ︷︷ ︸
false

⊕ B︸ ︷︷ ︸
false

= A ⊕ B︸ ︷︷ ︸
false

▶ Define offset of a wire ≡ XOR of its two labels

▶ Choose all wires in circuit to have same (secret) offset ∆
▶ Choose false output = false input ⊕ false input
▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A,A ⊕ ∆A

B,B ⊕ ∆B

C,C ⊕ ∆C

C← {0, 1}n

A︸ ︷︷ ︸
false

⊕ B︸ ︷︷ ︸
false

= A ⊕ B︸ ︷︷ ︸
false

▶ Define offset of a wire ≡ XOR of its two labels

▶ Choose all wires in circuit to have same (secret) offset ∆
▶ Choose false output = false input ⊕ false input
▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

A︸ ︷︷ ︸
false

⊕ B︸ ︷︷ ︸
false

= A ⊕ B︸ ︷︷ ︸
false

▶ Define offset of a wire ≡ XOR of its two labels
▶ Choose all wires in circuit to have same (secret) offset ∆

▶ Choose false output = false input ⊕ false input
▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

A︸ ︷︷ ︸
false

⊕ B︸ ︷︷ ︸
false

= A ⊕ B︸ ︷︷ ︸
false

▶ Define offset of a wire ≡ XOR of its two labels
▶ Choose all wires in circuit to have same (secret) offset ∆

▶ Choose false output = false input ⊕ false input
▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C := A ⊕ B

A︸ ︷︷ ︸
false

⊕ B︸ ︷︷ ︸
false

= A ⊕ B︸ ︷︷ ︸
false

▶ Define offset of a wire ≡ XOR of its two labels
▶ Choose all wires in circuit to have same (secret) offset ∆
▶ Choose false output = false input ⊕ false input

▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C := A ⊕ B

A︸ ︷︷ ︸
false

⊕ B ⊕ ∆︸ ︷︷ ︸
true

= A ⊕ B ⊕ ∆︸ ︷︷ ︸
true

▶ Define offset of a wire ≡ XOR of its two labels
▶ Choose all wires in circuit to have same (secret) offset ∆
▶ Choose false output = false input ⊕ false input
▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C := A ⊕ B

A ⊕ ∆︸ ︷︷ ︸
true

⊕ B︸ ︷︷ ︸
false

= A ⊕ B ⊕ ∆︸ ︷︷ ︸
true

▶ Define offset of a wire ≡ XOR of its two labels
▶ Choose all wires in circuit to have same (secret) offset ∆
▶ Choose false output = false input ⊕ false input
▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Free XOR [KolesnikovSchneider08]

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C := A ⊕ B

A ⊕ ∆︸ ︷︷ ︸
true

⊕ B ⊕ ∆︸ ︷︷ ︸
true

= A ⊕ B︸ ︷︷ ︸
false

▶ Define offset of a wire ≡ XOR of its two labels
▶ Choose all wires in circuit to have same (secret) offset ∆
▶ Choose false output = false input ⊕ false input
▶ Evaluate by xoring input wire labels (no crypto)

.
.
.
.
.
.
.
.

Scoreboard

size (×λ) garble cost eval cost
XOR AND XOR AND XOR AND

Classical [Yao86,GMW87] 8 8 4 4 2.5 2.5
P&P [BeaverMicaliRogaway90] 4 4 4 4 1 1
GRR3 [NaorPinkasSumner99] 3 3 4 4 1 1
Free XOR [KolesnikovSchneider08] 0 3 0 4 0 1

.
.
.
.
.
.
.
.

Row reduction ×2 [GueronLindellNofPinkas15]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 ← {0, 1}n

•• H(A0,B1) ⊕ C•1
•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly, choose them so that . . .

. . . first ciphertext is 0n

. . . XOR of other ciphertexts is 0n

First 2 ciphertexts don’t need to be sent!

•• G3

•• G4
⇒

•• 0n

•• G3 ⊕ G4

•• G3

•• G4

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

.
.
.
.
.
.
.
.

Row reduction ×2 [GueronLindellNofPinkas15]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 ← {0, 1}n

•• H(A0,B1) ⊕ C•1
•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly, choose them so that . . .

. . . first ciphertext is 0n

. . . XOR of other ciphertexts is 0n

First 2 ciphertexts don’t need to be sent!

•• G3

•• G4
⇒

•• 0n

•• G3 ⊕ G4

•• G3

•• G4

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

.
.
.
.
.
.
.
.

Row reduction ×2 [GueronLindellNofPinkas15]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 ← {0, 1}n
C1 = H(A0,B1)

•• H(A0,B1) ⊕ C•1 ← 0λ

•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly, choose them so that . . .

. . . first ciphertext is 0n

. . . XOR of other ciphertexts is 0n

First 2 ciphertexts don’t need to be sent!

•• G3

•• G4
⇒

•• 0n

•• G3 ⊕ G4

•• G3

•• G4

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

.
.
.
.
.
.
.
.

Row reduction ×2 [GueronLindellNofPinkas15]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 = H00 ⊕ H11 ⊕ H10

C1 = H(A0,B1)

•• H(A0,B1) ⊕ C•1 ← 0λ

•• H(A0,B0) ⊕ C•0
•• H(A1,B1) ⊕ C•0

←
⊕

= 0λ

•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly, choose them so that . . .

. . . first ciphertext is 0n

. . . XOR of other ciphertexts is 0n

First 2 ciphertexts don’t need to be sent!

•• G3

•• G4
⇒

•• 0n

•• G3 ⊕ G4

•• G3

•• G4

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

.
.
.
.
.
.
.
.

Row reduction ×2 [GueronLindellNofPinkas15]

A•0,A
•
1

B•0,B
•
1

C•0,C
•
1

C0 = H00 ⊕ H11 ⊕ H10

C1 = H(A0,B1)

•• H(A1,B1) ⊕ C•0
•• H(A1,B0) ⊕ C•0

Instead of choosing output wire labels
uniformly, choose them so that . . .

. . . first ciphertext is 0n

. . . XOR of other ciphertexts is 0n

First 2 ciphertexts don’t need to be sent!

•• G3

•• G4
⇒

•• 0n

•• G3 ⊕ G4

•• G3

•• G4

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

.
.
.
.
.
.
.
.

Scoreboard

size (×λ) garble cost eval cost
XOR AND XOR AND XOR AND

Classical [Yao86,GMW87] 8 8 4 4 2.5 2.5
P&P [BeaverMicaliRogaway90] 4 4 4 4 1 1
GRR3 [NaorPinkasSumner99] 3 3 4 4 1 1
Free XOR [KolesnikovSchneider08] 0 3 0 4 0 1
GRR2 [PinkasSchneiderSmartWilliams09] 2 2 2 2 1 1

▶ Depending on circuit, either Free-XOR or GRR2 may be better
▶ Two techniques are incompatible! (can’t guarantee C0 ⊕ C1 = ∆)

.
.
.
.
.
.
.
.

Scoreboard

size (×λ) garble cost eval cost
XOR AND XOR AND XOR AND

Classical [Yao86,GMW87] 8 8 4 4 2.5 2.5
P&P [BeaverMicaliRogaway90] 4 4 4 4 1 1
GRR3 [NaorPinkasSumner99] 3 3 4 4 1 1
Free XOR [KolesnikovSchneider08] 0 3 0 4 0 1
GRR2 [PinkasSchneiderSmartWilliams09] 2 2 2 2 1 1

▶ Depending on circuit, either Free-XOR or GRR2 may be better
▶ Two techniques are incompatible! (can’t guarantee C0 ⊕ C1 = ∆)

.
.
.
.
.
.
.
.

Samee Zahur, Mike Rosulek, David Evans:
Two Halves Make a Whole: Reducing Data
Transfer in Garbled Circuits using Half Gates.
Eurocrypt 2015

Best of both worlds: Free-XOR + 2-ciphertext AND

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

if a = 0:

unary gate b 7→ 0

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

if a = 0:

unary gate b 7→ 0

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

0 0
1 0

if a = 0:

unary gate b 7→ 0

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

B C
B ⊕ ∆ C

if a = 0:

unary gate b 7→ 0

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

0 0
1 1

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

B C
B ⊕ ∆ C ⊕ ∆

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ ∆

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ ∆

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ ∆

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C← {0, 1}n

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ ∆

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C := H(B)

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ ∆

if a = 1:

unary gate b 7→ b

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C := H(B)

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ ∆

if a = 1:

unary gate b 7→ b

0n

H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C := H(B)

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C

if a = 0:

unary gate b 7→ 0

H(B) ⊕ C
H(B ⊕ ∆) ⊕ C ⊕ ∆

if a = 1:

unary gate b 7→ b

H(B ⊕ ∆) ⊕ C ⊕ a∆

Fine print: permute ciphertexts with permute-and-point.

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C
Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C
Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C
H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C
H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C
H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C

⊕ A ⊕ CC← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C
H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C

⊕ A ⊕ C

C← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C
H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ C

C← {0, 1}n

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B) ⊕ C
H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ C

C := H(B)

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

0n

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ C

C := H(B)

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ C

C := H(B)

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C

Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Half Gates [ZahurRosulekEvans15]

What if evaluator knows in advance the truth value
on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

H(B ⊕ ∆) ⊕ A ⊕ C

⊕ A ⊕ C⊕ A ⊕ C

C := H(B)

Evaluator has B (knows false):

⇒ should obtain C (false)

Evaluator has B ⊕ ∆ (knows true):

⇒ should be able to transfer truth
value from “a” wire to “c” wire

▶ Suffices to learn A ⊕ C
Fine print: no need for permute-and-point here

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b

= (a ⊕ r ⊕ r) ∧ b
= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]= [(a ⊕ r) ∧ b]︸ ︷︷ ︸

one input known to evaluator

⊕[r ∧ b]= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r

▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear

▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b = (a ⊕ r ⊕ r) ∧ b

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]= [(a ⊕ r) ∧ b]︸ ︷︷ ︸
one input known to evaluator

⊕[r ∧ b]= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r

▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear

▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b = (a ⊕ r ⊕ r) ∧ b
= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]

= [(a ⊕ r) ∧ b]︸ ︷︷ ︸
one input known to evaluator

⊕[r ∧ b]= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r

▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear

▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b = (a ⊕ r ⊕ r) ∧ b
= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]

= [(a ⊕ r) ∧ b]︸ ︷︷ ︸
one input known to evaluator

⊕[r ∧ b]= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r

▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear

▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b = (a ⊕ r ⊕ r) ∧ b

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]

= [(a ⊕ r) ∧ b]︸ ︷︷ ︸
one input known to evaluator

⊕[r ∧ b]

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r

▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear

▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b = (a ⊕ r ⊕ r) ∧ b

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]= [(a ⊕ r) ∧ b]︸ ︷︷ ︸
one input known to evaluator

⊕[r ∧ b]

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r

▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear

▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b = (a ⊕ r ⊕ r) ∧ b

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]= [(a ⊕ r) ∧ b]︸ ︷︷ ︸
one input known to evaluator

⊕[r ∧ b]

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r

▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear

▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Two halves make a whole!

a ∧ b = (a ⊕ r ⊕ r) ∧ b

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]= [(a ⊕ r) ∧ b]︸ ︷︷ ︸
one input known to evaluator

⊕[r ∧ b]

= [(a ⊕ r) ∧ b] ⊕ [r ∧ b]︸︷︷︸
one input known to garbler

▶ Garbler chooses random bit r
▶ r = color bit of false wire label A

▶ Arrange for evaluator to learn a ⊕ r in the clear
▶ a ⊕ r = color bit of wire label evaluator gets (A or A ⊕∆)

▶ Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts

.
.
.
.
.
.
.
.

Scoreboard

size (×λ) garble cost eval cost
XOR AND XOR AND XOR AND

Classical [Yao86,GMW87] 8 8 4 4 2.5 2.5
P&P [BeaverMicaliRogaway90] 4 4 4 4 1 1
GRR3 [NaorPinkasSumner99] 3 3 4 4 1 1
Free XOR [KolesnikovSchneider08] 0 3 0 4 0 1
GRR2 [PinkasSchneiderSmartWilliams09] 2 2 2 2 1 1
Half gates [ZahurRosulekEvans15] 0 2 0 4 0 2

.
.
.
.
.
.
.
.

Open Question

Can we do better than half-gates?

in any useful way?

NO
[ZahurRosulekEvans15]

YES
[BallMalkinRosulek16,

KempkaKikuchiSuzuki16]

Can’t garble an AND gate with
< 2 ciphertexts

. . .

. . . using “standard techniques”

Can garble an AND gate with 1
ciphertext. . .

. . . but not in context of a larger
circuit /

.
.
.
.
.
.
.
.

Open Question

Can we do better than half-gates?

in any useful way?

NO
[ZahurRosulekEvans15]

YES
[BallMalkinRosulek16,

KempkaKikuchiSuzuki16]

Can’t garble an AND gate with
< 2 ciphertexts

. . .

. . . using “standard techniques”

Can garble an AND gate with 1
ciphertext

. . .

. . . but not in context of a larger
circuit /

.
.
.
.
.
.
.
.

Open Question

Can we do better than half-gates?

in any useful way?

NO
[ZahurRosulekEvans15]

YES
[BallMalkinRosulek16,

KempkaKikuchiSuzuki16]

Can’t garble an AND gate with
< 2 ciphertexts. . .

. . . using “standard techniques”

Can garble an AND gate with 1
ciphertext

. . .

. . . but not in context of a larger
circuit /

.
.
.
.
.
.
.
.

Open Question

Can we do better than half-gates?

in any useful way?

NO
[ZahurRosulekEvans15]

YES
[BallMalkinRosulek16,

KempkaKikuchiSuzuki16]

Can’t garble an AND gate with
< 2 ciphertexts. . .

. . . using “standard techniques”

Can garble an AND gate with 1
ciphertext. . .

. . . but not in context of a larger
circuit /

.
.
.
.
.
.
.
.

Open Question

Can we do better than half-gates?
in any useful way?

NO
[ZahurRosulekEvans15]

YES
[BallMalkinRosulek16,

KempkaKikuchiSuzuki16]

Can’t garble an AND gate with
< 2 ciphertexts. . .

. . . using “standard techniques”

Can garble an AND gate with 1
ciphertext. . .

. . . but not in context of a larger
circuit /

.
.
.
.
.
.
.
.

Roadmap

1 Optimizations: How did garbled boolean circuits get so small?

2 New frontiers: How to garble arithmetic circuits

[BallMalkinRosulek16]

.
.
.
.
.
.
.
.

Roadmap

1 Optimizations: How did garbled boolean circuits get so small?

2 New frontiers: How to garble arithmetic circuits
[BallMalkinRosulek16]

.
.
.
.
.
.
.
.

Generalized Free XOR [BallMalkinRosulek16]

Free XOR:
Wire carries a truth value from
{0, 1}

Wire labels are bit strings {0, 1}λ .

Global wire-label-offset ∆ ∈ {0, 1}λ

false wire label is A
true wire label is A ⊕ ∆

⊕ is componentwise addition mod 2

Generalized Free XOR:
Wire carries a truth value from Zm

Wire labels are tuples (Zm)λ .

Global wire-label-offset ∆ ∈ (Zm)λ

Wire label encoding truth value
a ∈ Zm is A+ a∆

+ is componentwise addition mod m

.
.
.
.
.
.
.
.

Generalized Free XOR [BallMalkinRosulek16]

Free XOR:
Wire carries a truth value from
{0, 1}

Wire labels are bit strings {0, 1}λ .

Global wire-label-offset ∆ ∈ {0, 1}λ

false wire label is A
true wire label is A ⊕ ∆

⊕ is componentwise addition mod 2

Generalized Free XOR:
Wire carries a truth value from Zm

Wire labels are tuples (Zm)λ .

Global wire-label-offset ∆ ∈ (Zm)λ

Wire label encoding truth value
a ∈ Zm is A+ a∆

+ is componentwise addition mod m

.
.
.
.
.
.
.
.

Generalized Free XOR [BallMalkinRosulek16]

Free XOR:
Wire carries a truth value from
{0, 1}

Wire labels are bit strings {0, 1}λ .

Global wire-label-offset ∆ ∈ {0, 1}λ

false wire label is A
true wire label is A ⊕ ∆

⊕ is componentwise addition mod 2

Generalized Free XOR:
Wire carries a truth value from Zm

Wire labels are tuples (Zm)λ .

Global wire-label-offset ∆ ∈ (Zm)λ

Wire label encoding truth value
a ∈ Zm is A+ a∆

+ is componentwise addition mod m

.
.
.
.
.
.
.
.

Generalized Free XOR [BallMalkinRosulek16]

Free XOR:
Wire carries a truth value from
{0, 1}

Wire labels are bit strings {0, 1}λ .

Global wire-label-offset ∆ ∈ {0, 1}λ

false wire label is A
true wire label is A ⊕ ∆

⊕ is componentwise addition mod 2

Generalized Free XOR:
Wire carries a truth value from Zm

Wire labels are tuples (Zm)λ .

Global wire-label-offset ∆ ∈ (Zm)λ

Wire label encoding truth value
a ∈ Zm is A+ a∆

+ is componentwise addition mod m

.
.
.
.
.
.
.
.

Generalized Free XOR [BallMalkinRosulek16]

Free XOR:
Wire carries a truth value from
{0, 1}

Wire labels are bit strings {0, 1}λ .

Global wire-label-offset ∆ ∈ {0, 1}λ

false wire label is A
true wire label is A ⊕ ∆

⊕ is componentwise addition mod 2

Generalized Free XOR:
Wire carries a truth value from Zm

Wire labels are tuples (Zm)λ .

Global wire-label-offset ∆ ∈ (Zm)λ

Wire label encoding truth value
a ∈ Zm is A+ a∆

+ is componentwise addition mod m

.
.
.
.
.
.
.
.

Generalized Free XOR

Idea: Truth value a ∈ Zm encoded by wire label A+ a∆ ∈ (Zm)λ

Zm
A+ a∆

B+ b∆

Evaulator can simply add wire labels ⇒ free garbled addition mod m

▶ Free multiplication by public constant c, if gcd(c,m) = 1

.
.
.
.
.
.
.
.

Generalized Free XOR

Idea: Truth value a ∈ Zm encoded by wire label A+ a∆ ∈ (Zm)λ

Zm
A+ a∆

B+ b∆

Evaulator can simply add wire labels ⇒ free garbled addition mod m

▶ Free multiplication by public constant c, if gcd(c,m) = 1

.
.
.
.
.
.
.
.

Generalized Free XOR

Idea: Truth value a ∈ Zm encoded by wire label A+ a∆ ∈ (Zm)λ

Zm
A+ a∆

B+ b∆

(A+ B) + (a+ b)∆

Evaulator can simply add wire labels

⇒ free garbled addition mod m

▶ Free multiplication by public constant c, if gcd(c,m) = 1

.
.
.
.
.
.
.
.

Generalized Free XOR

Idea: Truth value a ∈ Zm encoded by wire label A+ a∆ ∈ (Zm)λ

Zm
A+ a∆

B+ b∆

C+ (a+ b)∆

Evaulator can simply add wire labels ⇒ free garbled addition mod m

▶ Free multiplication by public constant c, if gcd(c,m) = 1

.
.
.
.
.
.
.
.

Generalized Free XOR

Idea: Truth value a ∈ Zm encoded by wire label A+ a∆ ∈ (Zm)λ

Zm
A+ a∆

B+ b∆

C+ (a+ b)∆

Evaulator can simply add wire labels ⇒ free garbled addition mod m
▶ Free multiplication by public constant c, if gcd(c,m) = 1

.
.
.
.
.
.
.
.

Garbling unary gates

φ
truth value ∈ Zm truth value ∈ Zℓ

labels {A+ a∆m}a∈Zm labels {C+ c∆ℓ}c∈Zℓ

0 φ(0)
1 φ(1)
2 φ(2)
...
...

A C+ φ(0)∆ℓ

A+ ∆m C+ φ(1)∆ℓ

A+ 2∆m C+ φ(2)∆ℓ

...
...

H(A) + C+ φ(0)∆ℓ

H(A+ ∆m) + C+ φ(1)∆ℓ

H(A+ 2∆m) + C+ φ(2)∆ℓ

...

▶ Different “preferred modulus” on each wire

⇒ different offsets ∆
▶ Cost: m ciphertexts

(m − 1 using standard row reduction)

▶ Generalized point-and-permute: “color bit” from Zm

.
.
.
.
.
.
.
.

Garbling unary gates

φ
truth value ∈ Zm truth value ∈ Zℓ

labels {A+ a∆m}a∈Zm labels {C+ c∆ℓ}c∈Zℓ

0 φ(0)
1 φ(1)
2 φ(2)
...
...

A C+ φ(0)∆ℓ

A+ ∆m C+ φ(1)∆ℓ

A+ 2∆m C+ φ(2)∆ℓ

...
...

H(A) + C+ φ(0)∆ℓ

H(A+ ∆m) + C+ φ(1)∆ℓ

H(A+ 2∆m) + C+ φ(2)∆ℓ

...

▶ Different “preferred modulus” on each wire⇒ different offsets ∆

▶ Cost: m ciphertexts

(m − 1 using standard row reduction)

▶ Generalized point-and-permute: “color bit” from Zm

.
.
.
.
.
.
.
.

Garbling unary gates

φ
truth value ∈ Zm truth value ∈ Zℓ

labels {A+ a∆m}a∈Zm labels {C+ c∆ℓ}c∈Zℓ

0 φ(0)
1 φ(1)
2 φ(2)
...
...

A C+ φ(0)∆ℓ

A+ ∆m C+ φ(1)∆ℓ

A+ 2∆m C+ φ(2)∆ℓ

...
...

H(A) + C+ φ(0)∆ℓ

H(A+ ∆m) + C+ φ(1)∆ℓ

H(A+ 2∆m) + C+ φ(2)∆ℓ

...

▶ Different “preferred modulus” on each wire⇒ different offsets ∆

▶ Cost: m ciphertexts

(m − 1 using standard row reduction)

▶ Generalized point-and-permute: “color bit” from Zm

.
.
.
.
.
.
.
.

Garbling unary gates

φ
truth value ∈ Zm truth value ∈ Zℓ

labels {A+ a∆m}a∈Zm labels {C+ c∆ℓ}c∈Zℓ

0 φ(0)
1 φ(1)
2 φ(2)
...
...

A C+ φ(0)∆ℓ

A+ ∆m C+ φ(1)∆ℓ

A+ 2∆m C+ φ(2)∆ℓ

...
...

H(A) + C+ φ(0)∆ℓ

H(A+ ∆m) + C+ φ(1)∆ℓ

H(A+ 2∆m) + C+ φ(2)∆ℓ

...

▶ Different “preferred modulus” on each wire⇒ different offsets ∆
▶ Cost: m ciphertexts

(m − 1 using standard row reduction)

▶ Generalized point-and-permute: “color bit” from Zm

.
.
.
.
.
.
.
.

Garbling unary gates

φ
truth value ∈ Zm truth value ∈ Zℓ

labels {A+ a∆m}a∈Zm labels {C+ c∆ℓ}c∈Zℓ

0 φ(0)
1 φ(1)
2 φ(2)
...
...

A C+ φ(0)∆ℓ

A+ ∆m C+ φ(1)∆ℓ

A+ 2∆m C+ φ(2)∆ℓ

...
...

H(A) + C+ φ(0)∆ℓ

H(A+ ∆m) + C+ φ(1)∆ℓ

H(A+ 2∆m) + C+ φ(2)∆ℓ

...

▶ Different “preferred modulus” on each wire⇒ different offsets ∆
▶ Cost: m ciphertexts (m − 1 using standard row reduction)
▶ Generalized point-and-permute: “color bit” from Zm

.
.
.
.
.
.
.
.

Generalized garbling tools
We can efficiently garble any computation/circuit where:
▶ Each wire has a preferred modulus Zm
⇒ Wire-label-offset ∆m global to all Zm-wires

▶ Addition gates: all wires touching gate have same modulus
⇒ Garbling cost: free

▶ Mult-by-constant gates: input/output wires have same modulus
⇒ Garbling cost: free

▶ Unary gates: Zm input and Zℓ output
⇒ Garbling cost: m − 1 ciphertexts

Better basis for many computations than traditional boolean circuits!

.
.
.
.
.
.
.
.

Generalized garbling tools
We can efficiently garble any computation/circuit where:
▶ Each wire has a preferred modulus Zm
⇒ Wire-label-offset ∆m global to all Zm-wires

▶ Addition gates: all wires touching gate have same modulus
⇒ Garbling cost: free

▶ Mult-by-constant gates: input/output wires have same modulus
⇒ Garbling cost: free

▶ Unary gates: Zm input and Zℓ output
⇒ Garbling cost: m − 1 ciphertexts

Better basis for many computations than traditional boolean circuits!

.
.
.
.
.
.
.
.

Arithmetic computations
Example Scenario
Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are addition, multiplication, etc

“Standard approach”
▶ Represent 32-bit integers in binary
▶ Build circuit from boolean addition/multiplication subcircuits
▶ Garble with half-gates (AND costs 2, XOR costs 0)

cost (# ciphertexts)
addition 62

multiplication by public constant 758
multiplication 1200

squaring, cubing, etc 1864

.
.
.
.
.
.
.
.

Arithmetic computations
Example Scenario
Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are addition, multiplication, etc

“Standard approach”
▶ Represent 32-bit integers in binary
▶ Build circuit from boolean addition/multiplication subcircuits
▶ Garble with half-gates (AND costs 2, XOR costs 0)

cost (# ciphertexts)
addition 62

multiplication by public constant 758
multiplication 1200

squaring, cubing, etc 1864

.
.
.
.
.
.
.
.

Arithmetic computations
Example Scenario
Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are addition, multiplication, etc

“Standard approach”
▶ Represent 32-bit integers in binary
▶ Build circuit from boolean addition/multiplication subcircuits
▶ Garble with half-gates (AND costs 2, XOR costs 0)

cost (# ciphertexts)
addition 62

multiplication by public constant 758
multiplication 1200

squaring, cubing, etc 1864

.
.
.
.
.
.
.
.

Arithmetic computations

Using generalized garbling techniques:
▶ Think of arithmetic circuit: wires carry values in Z232

▶ Garbled addition, multiplication by constant is free
▶ Multiplication mod m costs 2m − 2 ciphertexts (generalization of

half-gates)

standard ours
addition 62 0

multiplication by public constant 758 0
multiplication 1200

8589934590

squaring, cubing, etc 1864

4294967295

.
.
.
.
.
.
.
.

Arithmetic computations

Using generalized garbling techniques:
▶ Think of arithmetic circuit: wires carry values in Z232
▶ Garbled addition, multiplication by constant is free

▶ Multiplication mod m costs 2m − 2 ciphertexts (generalization of
half-gates)

standard ours
addition 62 0

multiplication by public constant 758 0
multiplication 1200

8589934590

squaring, cubing, etc 1864

4294967295

.
.
.
.
.
.
.
.

Arithmetic computations

Using generalized garbling techniques:
▶ Think of arithmetic circuit: wires carry values in Z232
▶ Garbled addition, multiplication by constant is free
▶ Multiplication mod m costs 2m − 2 ciphertexts (generalization of

half-gates)

standard ours
addition 62 0

multiplication by public constant 758 0
multiplication 1200

8589934590

squaring, cubing, etc 1864

4294967295

.
.
.
.
.
.
.
.

Arithmetic computations

Using generalized garbling techniques:
▶ Think of arithmetic circuit: wires carry values in Z232
▶ Garbled addition, multiplication by constant is free
▶ Multiplication mod m costs 2m − 2 ciphertexts (generalization of

half-gates)

standard ours
addition 62 0

multiplication by public constant 758 0
multiplication 1200 8589934590

squaring, cubing, etc 1864 4294967295

.
.
.
.
.
.
.
.

Arithmetic computations

instead of Z4294967296

= Z232

↓
use Z6469693230

= Z2·3·5·7···29

.
.
.
.
.
.
.
.

Arithmetic computations

instead of Z4294967296 = Z232
↓

use Z6469693230

= Z2·3·5·7···29

.
.
.
.
.
.
.
.

Arithmetic computations

instead of Z4294967296 = Z232
↓

use Z6469693230 = Z2·3·5·7···29

.
.
.
.
.
.
.
.

Arithmetic computations

CRT residue number system!
▶ Generalized garbling scheme supports many moduli in same circuit
▶ Represent 32-bit integer x as (x % 2, x % 3, x % 5, . . . , x % 29)

▶ Do all arithmetic in each residue (each with small modulus)

standard madness

CRT

addition 62 0

0

mult by public constant 758 0

0

multiplication 1200 25769803776

238 ≈ 2(2 + 3 + 5 + · · ·)

squaring, cubing, etc 1864 4294967296

119

.
.
.
.
.
.
.
.

Arithmetic computations

CRT residue number system!
▶ Generalized garbling scheme supports many moduli in same circuit
▶ Represent 32-bit integer x as (x % 2, x % 3, x % 5, . . . , x % 29)

▶ Do all arithmetic in each residue (each with small modulus)

standard madness CRT
addition 62 0 0

mult by public constant 758 0 0
multiplication 1200 25769803776 238 ≈ 2(2 + 3 + 5 + · · ·)

squaring, cubing, etc 1864 4294967296 119

.
.
.
.
.
.
.
.

Challenges:
State of the art:
“If values are represented in CRT form then garbled operations are cheap.”

But doesn’t it cost something
to get values into CRT form⁇

Not so good:
▶ Converting from binary to

CRT
▶ Getting CRT values into

the circuit via OT

Kinda bad: (room for improvement)
▶ Comparing two CRT-encoded

values
▶ Converting from CRT to binary
▶ Integer division
▶ Modular reduction different than

the CRT composite modulus (e.g.,
garbled RSA)

.
.
.
.
.
.
.
.

Challenges:
State of the art:
“If values are represented in CRT form then garbled operations are cheap.”

But doesn’t it cost something
to get values into CRT form⁇

Not so good:
▶ Converting from binary to

CRT
▶ Getting CRT values into

the circuit via OT

Kinda bad: (room for improvement)
▶ Comparing two CRT-encoded

values
▶ Converting from CRT to binary
▶ Integer division
▶ Modular reduction different than

the CRT composite modulus (e.g.,
garbled RSA)

.
.
.
.
.
.
.
.

Converting to CRT

Claim:
It’s not hard to convert into CRT representation Zp1 × Zp2 × · · · × Zpk

From binary bnbn−1 · · · b1b0:
▶ For all i, j, use unary gate bi 7→ bi (mod pj) (1 ciphertext each)
▶ For all j, add to obtain

∑
i bi2

i (mod pj) (free)
▶ Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

At the input level (e.g., OTs in Yao): (similar to [Gilboa99,KellerOrsiniScholl16])

▶ Outside of the circuit, convert plaintext input into CRT form
▶ Convert Zpj -residue to binary, and transfer it using ⌈log pj⌉ OTs
▶ Total cost:

∑
j log pj OTs (e.g., 37 OTs for 32-bit values)

.
.
.
.
.
.
.
.

Converting to CRT

Claim:
It’s not hard to convert into CRT representation Zp1 × Zp2 × · · · × Zpk

From binary bnbn−1 · · · b1b0:
▶ For all i, j, use unary gate bi 7→ bi (mod pj) (1 ciphertext each)
▶ For all j, add to obtain

∑
i bi2

i (mod pj) (free)
▶ Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

At the input level (e.g., OTs in Yao): (similar to [Gilboa99,KellerOrsiniScholl16])

▶ Outside of the circuit, convert plaintext input into CRT form
▶ Convert Zpj -residue to binary, and transfer it using ⌈log pj⌉ OTs
▶ Total cost:

∑
j log pj OTs (e.g., 37 OTs for 32-bit values)

.
.
.
.
.
.
.
.

Converting to CRT

Claim:
It’s not hard to convert into CRT representation Zp1 × Zp2 × · · · × Zpk

From binary bnbn−1 · · · b1b0:
▶ For all i, j, use unary gate bi 7→ bi (mod pj) (1 ciphertext each)
▶ For all j, add to obtain

∑
i bi2

i (mod pj) (free)
▶ Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

At the input level (e.g., OTs in Yao): (similar to [Gilboa99,KellerOrsiniScholl16])

▶ Outside of the circuit, convert plaintext input into CRT form
▶ Convert Zpj -residue to binary, and transfer it using ⌈log pj⌉ OTs
▶ Total cost:

∑
j log pj OTs (e.g., 37 OTs for 32-bit values)

.
.
.
.
.
.
.
.

Comparing CRT values
CRT view of Z2·3·5·7:

0 0 0 0 0
1 1 1 1 1
2 2 2 0 2
3 3 0 1 3
4 4 1 0 4
5 0 2 1 5
6 1 0 0 6
0 2 1 1 7
...
...

1 4 2 1 29
2 0 0 0 30
...
...

Theorem
CRT representation sucks for
comparisons!

.
.
.
.
.
.
.
.

Comparing CRT values
CRT view of Z2·3·5·7:

0 0 0 0 0
1 1 1 1 1
2 2 2 0 2
3 3 0 1 3
4 4 1 0 4
5 0 2 1 5
6 1 0 0 6
0 2 1 1 7
...
...

1 4 2 1 29
2 0 0 0 30
...
...

Theorem
CRT representation sucks for
comparisons!

.
.
.
.
.
.
.
.

Comparing CRT values
CRT view of Z2·3·5·7:

0 0 0 0 0
1 1 1 1 1
2 2 2 0 2
3 3 0 1 3
4 4 1 0 4
5 0 2 1 5
6 1 0 0 6
0 2 1 1 7
...
...

1 4 2 1 29
2 0 0 0 30
...
...

Primorial Mixed Radix (PMR)

0 0
1 1

1 0 2
1 1 3
2 0 4
2 1 5

1 0 0 6
1 0 1 7
...
...

4 2 1 29
1 0 0 0 30
...
...

.
.
.
.
.
.
.
.

Comparing CRT values
CRT view of Z2·3·5·7:

0 0 0 0 0
1 1 1 1 1
2 2 2 0 2
3 3 0 1 3
4 4 1 0 4
5 0 2 1 5
6 1 0 0 6
0 2 1 1 7
...
...

1 4 2 1 29
2 0 0 0 30
...
...

Primorial Mixed Radix (PMR)

0 0
1 1

1 0 2
1 1 3
2 0 4
2 1 5

1 0 0 6
1 0 1 7
...
...

4 2 1 29
1 0 0 0 30
...
...

.
.
.
.
.
.
.
.

Approach for comparisons
CRT values given

↓
Convert both CRT values to PMR

Simple building block:

(x%p, x%q) 7→
⌊
x
p

⌋
%q

allows you to compute PMR representation of x:

. . . ,
⌊ x
2 · 3 · 5

⌋
% 7,

⌊ x
2 · 3

⌋
% 5,

⌊ x
2

⌋
% 3, ⌊x⌋ % 2

↓
Compare PMR (simple L→R scan)

.
.
.
.
.
.
.
.

Approach for comparisons
CRT values given

↓
Convert both CRT values to PMR

Simple building block:

(x%p, x%q) 7→
⌊
x
p

⌋
%q

allows you to compute

PMR representation of x:

. . . ,
⌊ x
2 · 3 · 5

⌋
% 7,

⌊ x
2 · 3

⌋
% 5,

⌊ x
2

⌋
% 3, ⌊x⌋ % 2

↓
Compare PMR (simple L→R scan)

.
.
.
.
.
.
.
.

Approach for comparisons
CRT values given

↓
Convert both CRT values to PMR
Simple building block:

(x%p, x%q) 7→
⌊
x
p

⌋
%q

allows you to compute PMR representation of x:

. . . ,
⌊ x
2 · 3 · 5

⌋
% 7,

⌊ x
2 · 3

⌋
% 5,

⌊ x
2

⌋
% 3, ⌊x⌋ % 2

↓
Compare PMR (simple L→R scan)

.
.
.
.
.
.
.
.

(x%p, x%q) 7→
⌊
x/p

⌋
%q

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x % 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x % 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

x%3 − x%5 0 0 0 -3 -3 2 -1 -1 -1 -4 1 1 -2 -2 -2
(x%3 − x%5)%7 0 0 0 4 4 2 6 6 6 3 1 1 5 5 5

⌊x/3⌋ % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

1. Subtract x%3 − x%5

(mod 7 is fine)
▶ “Project” x%3 and x%5 to Z7 wires
▶ Subtract mod 7 for free

2. Result has the same “constant segments” as what we want

▶ Apply unary projection:

0 7→ 0 2 7→ 1 4 7→ 1 6 7→ 2

1 7→ 3 3 7→ 3 5 7→ 4

.
.
.
.
.
.
.
.

(x%p, x%q) 7→
⌊
x/p

⌋
%q

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x % 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x % 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

x%3 − x%5 0 0 0 -3 -3 2 -1 -1 -1 -4 1 1 -2 -2 -2

(x%3 − x%5)%7 0 0 0 4 4 2 6 6 6 3 1 1 5 5 5

⌊x/3⌋ % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

1. Subtract x%3 − x%5

(mod 7 is fine)
▶ “Project” x%3 and x%5 to Z7 wires
▶ Subtract mod 7 for free

2. Result has the same “constant segments” as what we want

▶ Apply unary projection:

0 7→ 0 2 7→ 1 4 7→ 1 6 7→ 2

1 7→ 3 3 7→ 3 5 7→ 4

.
.
.
.
.
.
.
.

(x%p, x%q) 7→
⌊
x/p

⌋
%q

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x % 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x % 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

x%3 − x%5 0 0 0 -3 -3 2 -1 -1 -1 -4 1 1 -2 -2 -2

(x%3 − x%5)%7 0 0 0 4 4 2 6 6 6 3 1 1 5 5 5

⌊x/3⌋ % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

1. Subtract x%3 − x%5

(mod 7 is fine)
▶ “Project” x%3 and x%5 to Z7 wires
▶ Subtract mod 7 for free

2. Result has the same “constant segments” as what we want

▶ Apply unary projection:

0 7→ 0 2 7→ 1 4 7→ 1 6 7→ 2

1 7→ 3 3 7→ 3 5 7→ 4

.
.
.
.
.
.
.
.

(x%p, x%q) 7→
⌊
x/p

⌋
%q

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x % 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x % 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

x%3 − x%5 0 0 0 -3 -3 2 -1 -1 -1 -4 1 1 -2 -2 -2
(x%3 − x%5)%7 0 0 0 4 4 2 6 6 6 3 1 1 5 5 5
⌊x/3⌋ % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

1. Subtract x%3 − x%5 (mod 7 is fine)

▶ “Project” x%3 and x%5 to Z7 wires
▶ Subtract mod 7 for free

2. Result has the same “constant segments” as what we want

▶ Apply unary projection:

0 7→ 0 2 7→ 1 4 7→ 1 6 7→ 2

1 7→ 3 3 7→ 3 5 7→ 4

.
.
.
.
.
.
.
.

(x%p, x%q) 7→
⌊
x/p

⌋
%q

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x % 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x % 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

x%3 − x%5 0 0 0 -3 -3 2 -1 -1 -1 -4 1 1 -2 -2 -2
(x%3 − x%5)%7 0 0 0 4 4 2 6 6 6 3 1 1 5 5 5
⌊x/3⌋ % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

1. Subtract x%3 − x%5 (mod 7 is fine)
▶ “Project” x%3 and x%5 to Z7 wires
▶ Subtract mod 7 for free

2. Result has the same “constant segments” as what we want

▶ Apply unary projection:

0 7→ 0 2 7→ 1 4 7→ 1 6 7→ 2

1 7→ 3 3 7→ 3 5 7→ 4

.
.
.
.
.
.
.
.

(x%p, x%q) 7→
⌊
x/p

⌋
%q

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x % 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x % 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

x%3 − x%5 0 0 0 -3 -3 2 -1 -1 -1 -4 1 1 -2 -2 -2
(x%3 − x%5)%7 0 0 0 4 4 2 6 6 6 3 1 1 5 5 5
⌊x/3⌋ % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

1. Subtract x%3 − x%5 (mod 7 is fine)
▶ “Project” x%3 and x%5 to Z7 wires
▶ Subtract mod 7 for free

2. Result has the same “constant segments” as what we want
▶ Apply unary projection:

0 7→ 0 2 7→ 1 4 7→ 1 6 7→ 2

1 7→ 3 3 7→ 3 5 7→ 4

.
.
.
.
.
.
.
.

Approach for comparisons

1. General (x%p, x%q) 7→
⌊
x/p

⌋
%q gadget costs ∼ 2p+ 2q ciphertexts

2. PMR conversion requires this gadget between all pairs of primes

3. Total cost O(k3) for k-bit integers

Operations on 32-bit integers:

boolean CRT
addition 62 0

multiplication by public constant 758 0
multiplication 1200 238

squaring, cubing, etc 1864 119
comparison 64 2541

.
.
.
.
.
.
.
.

Approach for comparisons

1. General (x%p, x%q) 7→
⌊
x/p

⌋
%q gadget costs ∼ 2p+ 2q ciphertexts

2. PMR conversion requires this gadget between all pairs of primes

3. Total cost O(k3) for k-bit integers

Operations on 32-bit integers:

boolean CRT
addition 62 0

multiplication by public constant 758 0
multiplication 1200 238

squaring, cubing, etc 1864 119
comparison 64 2541

.
.
.
.
.
.
.
.

