Garbled Circuits

Mike Rosulek
Oregon State
crypt@b-it 2018

Garbled circuits (recap)

Key idea: Given garbled gate + one wire label per input wire:
can learn only one output label (authenticity) cannot learn truth value of labels (privacy)

Optimizing garbled circuits

Size of garbled circuits . . .

... is the most important parameter

- Applications of garbled circuits are network-bound
- Garbled circuit computations are very fast (typically hardware AES)

Today's Agenda:

Optimizations: How did garbled boolean circuits get so small?

New frontiers: How to garble arithmetic circuits

Ciphertext expansion

Position in this list leaks semantic value!

Ciphertext expansion

Position in this list leaks semantic value!

Ciphertext expansion

Position in this list leaks semantic value!
\Rightarrow Need to randomly permute ciphertexts

Ciphertext expansion

Position in this list leaks semantic value!
\Rightarrow Need to randomly permute ciphertexts
\Rightarrow Need to detect [in]correct decryption

Ciphertext expansion

Position in this list leaks semantic value!
\Rightarrow Need to randomly permute ciphertexts
\Rightarrow Need to detect [in]correct decryption
\Rightarrow Need encryption scheme with ciphertext expansion (size doubles)

Point-and-permute ${ }_{\text {[Baearemicialirgasanaspo] }}$

Point-and-permute ${ }_{\text {[Baearemidialirgasamasol }}$

- Assign color bits \bullet \& to wire labels
- Association between $(\bullet, \bullet) \leftrightarrow(T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)

Point-and-permute ${ }_{\text {[Beavememialirgoganasyo] }}$

- Assign color bits • \& \bullet to wire labels
- Association between $(\bullet, \bullet) \leftrightarrow(T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys

Point-and-permute ${ }_{\text {[Beavememialirgoganasyo] }}$

- Assign color bits • \& \bullet to wire labels
- Association between $(\bullet, \bullet) \leftrightarrow(T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys

Point-and-permute ${ }_{\text {[Beavememialirgoganasyo] }}$

- Assign color bits • \& \bullet to wire labels
- Association between $(\bullet, \bullet) \leftrightarrow(T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

Point-and-permute ${ }_{\text {[Beavememialirgoganasyo] }}$

- Assign color bits • \& \bullet to wire labels
- Association between $(\bullet, \bullet) \leftrightarrow(T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

Point-and-permute ${ }_{\text {[Baerememicilirgasamapo] }}$

- Assign color bits • \& \bullet to wire labels
- Association between $(\bullet, \bullet) \leftrightarrow(T, F)$ is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

No need for trial decryption \Rightarrow no need for ciphertext expansion!

- Can use simple one-time encryption $\mathbb{E}_{A, B}(C)=H(A, B) \oplus C$
- $H=$ random oracle (in practice: 1 call to AES)

Scoreboard

	size $(\times \lambda)$	garble cost	eval cost
Classical [Yao86,GMW87]	8	4	2.5
P\&P [BeaverMicaliRogaway90]	4	4	1

Garbled Row Reduction ${ }_{\text {Naopipiasasummese }]}$

Garbled Row Reduction ${ }_{\text {Naopipiasasummese }]}$

Instead of choosing output wire labels uniformly...

Garbled Row Reduction ${ }_{\text {Naopipiasasummese }]}$

Garbled Row Reduction ${ }_{\text {Naopipiasasummese }]}$

Garbled Row Reduction ${ }_{\text {Naopipiasasummese }]}$

Garbled Row Reduction

Instead of choosing output wire labels uniformly ...
... choose so that first ciphertext is 0^{n} (depends on colors \& gate function)

No need to include 1st ciphertext:

- Evaluator can "reconstruct" missing ciphertext and do the usual thing:

Scoreboard

	size $(\times \lambda)$	garble cost	eval cost
Classical [Yao86,GMW87]	8	4	2.5
P\&P [BeaverMicaliRogaway90]	4	4	1
GRR3 [NaorPinkasSumner99]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$

$$
\xlongequal[B_{0}, B_{1}]{A_{0}, A_{1}} \backsim \square C_{0}, C_{1}
$$

- Define offset of a wire \equiv XOR of its two labels

Free

- Define offset of a wire \equiv XOR of its two labels

Free $\times \bigcirc R_{\text {[KolesnikovSchneider08] }}$

- Define offset of a wire \equiv XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ

Free $\times \bigcirc R_{\text {[KolesnikovSchneider08] }}$

- Define offset of a wire \equiv XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ

- Define offset of a wire \equiv XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- Choose false output $=$ FALSE input \oplus false input

Free X○R [KolesnikovSchneider08]

- Define offset of a wire \equiv XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- Choose false output $=$ FALSE input \oplus FALSE input
- Evaluate by xoring input wire labels (no crypto)

Free X○R [KolesnikovSchneider08]

- Define offset of a wire \equiv XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- Choose false output $=$ FALSE input \oplus FALSE input
- Evaluate by xoring input wire labels (no crypto)

Free X○R [KolesnikovSchneider08]

- Define offset of a wire \equiv XOR of its two labels
- Choose all wires in circuit to have same (secret) offset Δ
- Choose false output $=$ FALSE input \oplus FALSE input
- Evaluate by xoring input wire labels (no crypto)

Scoreboard

	size $(\times \lambda)$		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Ya086,GMW87]	8	8	4	4	2.5	2.5
P\&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$

Instead of choosing output wire labels uniformly, choose them so that . . .

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

$$
\begin{aligned}
& C_{0} \leftarrow\{0,1\}^{n} \\
& C_{1} \leftarrow\{0,1\}^{n}
\end{aligned}
$$

Instead of choosing output wire labels uniformly, choose them so that . . .

- $H\left(A_{0}, B_{1}\right) \oplus C_{1}^{\bullet}$
- $H\left(A_{0}, B_{0}\right) \oplus C_{0}^{\circ}$
- $H\left(A_{1}, B_{1}\right) \oplus C_{0}^{*}$
-• $H\left(A_{1}, B_{0}\right) \oplus C_{0}^{0}$

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

$$
\begin{gathered}
C_{0} \leftarrow\{0,1\}^{n} \\
C_{1}=H\left(A_{0}, B_{1}\right)
\end{gathered}
$$

Instead of choosing output wire labels uniformly, choose them so that . . .
\ldots first ciphertext is 0^{n}

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

$$
\begin{gathered}
C_{0}=H_{00} \oplus H_{11} \oplus H_{10} \\
C_{1}=H\left(A_{0}, B_{1}\right)
\end{gathered}
$$

Instead of choosing output wire labels uniformly, choose them so that ...
\ldots first ciphertext is 0^{n}
\ldots XOR of other ciphertexts is 0^{n}

First 2 ciphertexts don't need to be sent!

Note: (More complicated) 2-ctxt AND first appeared in [PinkasSchneiderSmartWilliams09].

Scoreboard

	size $(\times \lambda)$		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Yao86,GMW87]	8	8	4	4	2.5	2.5
P\&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	0	3	0	4	0	1
GRR2 [PinkasSchneiderSmartWilliams09]	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$

Scoreboard

	size $(\times \lambda)$		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Yao86,GMW87]	8	8	4	4	2.5	2.5
P\&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	0	3	0	4	0	1
GRR2 [PinkasSchneiderSmartWilliams09]	2	2	2	2	1	1

- Depending on circuit, either Free-XOR or GRR2 may be better
- Two techniques are incompatible! (can't guarantee $C_{0} \oplus C_{1}=\Delta$)

Samee Zahur, Mike Rosulek, David Evans: Two Halves Make a Whole: Reducing Data Transfer in Garbled Circuits using Half Gates. Eurocrypt 2015

Best of both worlds: Free-XOR + 2-ciphertext AND

Half Gates

What if garbler knows in advance the truth value on one input wire?

$$
\frac{A, A \oplus \Delta}{B, B \oplus \Delta} \square C, C \oplus \Delta
$$

Half Gates

What if garbler knows in advance the truth value on one input wire?

Half Gates

What if garbler knows in advance the truth value on one input wire?

if $a=0:$

0	0
1	0

unary gate $b \mapsto 0$

Half Gates

What if garbler knows in advance the truth value on one input wire?

$$
\begin{aligned}
& \text { if } a=0 \text { : } \\
& \qquad \begin{array}{|l|l|}
\hline B & C \\
B \oplus \Delta & C \\
\text { unary gate } b \mapsto 0
\end{array} \\
& \text { und }
\end{aligned}
$$

Half Gates

What if garbler knows in advance the truth value on one input wire?

$$
\begin{aligned}
& \text { if } a=0 \text { : } \\
& \begin{array}{l}
H(B) \oplus C \\
H(B \oplus \Delta) \oplus C
\end{array} \\
& \text { unary gate } b \mapsto 0
\end{aligned}
$$

Half Gates

What if garbler knows in advance the truth value on one input wire?

Half Gates

What if garbler knows in advance the truth value on one input wire?

$$
\begin{aligned}
& \quad \text { if } a=1 \text { : } \\
& \begin{array}{|l|l|l}
0 & 0 \\
1 & 1
\end{array} \\
& \hline \text { gate } b \mapsto b
\end{aligned}
$$

Half Gates

What if garbler knows in advance the truth value on one input wire?

Half Gates

What if garbler knows in advance the truth value on one input wire?

\[

\]

Half Gates

What if garbler knows in advance the truth value on one input wire?

Half Gates

What if garbler knows in advance the truth value on one input wire?

Half Gates

What if garbler knows in advance the truth value on one input wire?

What if garbler knows in advance the truth value on one input wire?

What if garbler knows in advance the truth value on one input wire?

What if garbler knows in advance the truth value on one input wire?

Fine print: permute ciphertexts with permute-and-point.

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should obtain C (FALSE)

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates ${ }_{[Z \text { zaturnosulekeranast] }}$

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Half Gates

What if evaluator knows in advance the truth value on one input wire?

Evaluator has B (knows false):
\Rightarrow should obtain C (FALSE)
Evaluator has $B \oplus \Delta$ (knows true):
\Rightarrow should be able to transfer truth value from " a " wire to " c " wire

- Suffices to learn $A \oplus C$

Fine print: no need for permute-and-point here

Two halves make a whole!

$a \wedge b$

Two halves make a whole!

$$
a \wedge b=(a \oplus r \oplus r) \wedge b
$$

- Garbler chooses random bit r

Two halves make a whole!

$$
\begin{aligned}
a \wedge b & =(a \oplus r \oplus r) \wedge b \\
& =[(a \oplus r) \wedge b] \oplus[r \wedge b]
\end{aligned}
$$

- Garbler chooses random bit r

Two halves make a whole!

$$
\begin{aligned}
a \wedge b & =(a \oplus r \oplus r) \wedge b \\
& =[(a \oplus r) \wedge b] \oplus[r \wedge b]
\end{aligned}
$$

- Garbler chooses random bit r
- Arrange for evaluator to learn $a \oplus r$ in the clear

Two halves make a whole!

$$
\begin{aligned}
a \wedge b & =(a \oplus r \oplus r) \wedge b \\
& =\underbrace{[(a \oplus r) \wedge b]}_{\text {one input known to e evaluator }} \oplus[r \wedge b]
\end{aligned}
$$

- Garbler chooses random bit r
- Arrange for evaluator to learn $a \oplus r$ in the clear

Two halves make a whole!

$$
\begin{aligned}
a \wedge b & =(a \oplus r \oplus r) \wedge b \\
& =[(a \oplus r) \wedge b] \oplus \underbrace{r \wedge b]}
\end{aligned}
$$

one input known to garbler

- Garbler chooses random bit r
- Arrange for evaluator to learn $a \oplus r$ in the clear

Two halves make a whole!

$$
\begin{aligned}
a \wedge b & =(a \oplus r \oplus r) \wedge b \\
& =[(a \oplus r) \wedge b] \oplus \underbrace{r \wedge b]}
\end{aligned}
$$

one input known to garbler

- Garbler chooses random bit r
- Arrange for evaluator to learn $a \oplus r$ in the clear
- Total cost $=2$ "half gates" +1 XOR gate $=2$ ciphertexts

Two halves make a whole!

$$
\begin{aligned}
a \wedge b & =(a \oplus r \oplus r) \wedge b \\
& =[(a \oplus r) \wedge b] \oplus \underbrace{r \wedge b]}
\end{aligned}
$$

one input known to garbler

- Garbler chooses random bit r
- $r=$ color bit of false wire label A
- Arrange for evaluator to learn $a \oplus r$ in the clear
- $a \oplus r=$ color bit of wire label evaluator gets $(A$ or $A \oplus \Delta)$
- Total cost $=2$ "half gates" +1 XOR gate $=2$ ciphertexts

Scoreboard

	size $(\times \lambda)$		garble cost		eval cost	
	XOR	AND	XOR	AND	XOR	AND
Classical [Yao86,GMW87]	8	8	4	4	2.5	2.5
P\&P [BeaverMicaliRogaway90]	4	4	4	4	1	1
GRR3 [NaorPinkasSumner99]	3	3	4	4	1	1
Free XOR [KolesnikovSchneider08]	0	3	0	4	0	1
GRR2 [PinkasSchneiderSmartWilliams09]	2	2	2	2	1	1
Half gates [ZahurRosulekEvans15]	$\mathbf{0}$	2	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{2}$

Open Question

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

Can't garble an AND gate with <2 ciphertexts

Open Question

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

YES

[BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can't garble an AND gate with <2 ciphertexts

Can garble an AND gate with 1 ciphertext

Open Question

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

YES
[BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can't garble an AND gate with < 2 ciphertexts...
... using "standard techniques"

Can garble an AND gate with 1 ciphertext

Open Question

Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

YES

[BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can't garble an AND gate with < 2 ciphertexts...
... using "standard techniques"

Can garble an AND gate with 1 ciphertext...
... but not in context of a larger circuit ${ }^{+}$

Open Question

Can we do better than half-gates? in any useful way?

NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts...
... using "standard techniques"

Can garble an AND gate with 1 ciphertext...
... but not in context of a larger circuit ${ }^{+}$

Roadmap

Optimizations: How did garbled boolean circuits get so small?

New frontiers: How to garble arithmetic circuits

Roadmap

Optimizations: How did garbled boolean circuits get so small?

2
New frontiers: How to garble arithmetic circuits
[BallMalkinRosulek16]

Free XOR:

Wire carries a truth value from
$\{0,1\}$
Wire labels are bit strings $\{0,1\}^{\lambda}$.
Global wire-label-offset $\Delta \in\{0,1\}^{\lambda}$
false wire label is A true wire label is $A \oplus \Delta$

Generalized Free XOR ${ }_{[\text {BalMalakinposuleth }]}$

Free XOR:

Wire carries a truth value from $\{0,1\}$

Wire labels are bit strings $\{0,1\}^{\lambda}$.
Global wire-label-offset $\Delta \in\{0,1\}^{\lambda}$
false wire label is A true wire label is $A \oplus \Delta$

Generalized Free XOR:

Wire carries a truth value from \mathbb{Z}_{m}

Generalized Free XOR ${ }_{[\text {BalMalakinposuleth }]}$

Free XOR:

Wire carries a truth value from $\{0,1\}$

Wire labels are bit strings $\{0,1\}^{\lambda}$.
Global wire-label-offset $\Delta \in\{0,1\}^{\lambda}$
false wire label is A true wire label is $A \oplus \Delta$

Generalized Free XOR:

Wire carries a truth value from \mathbb{Z}_{m}

Wire labels are tuples $\left(\mathbb{Z}_{m}\right)^{\lambda}$.
Global wire-label-offset $\Delta \in\left(\mathbb{Z}_{m}\right)^{\lambda}$

Generalized Free XOR ${ }_{[\text {BalMakliniposuletert] }}$

Free XOR:

Wire carries a truth value from $\{0,1\}$

Wire labels are bit strings $\{0,1\}^{\lambda}$.
Global wire-label-offset $\Delta \in\{0,1\}^{\lambda}$
false wire label is A true wire label is $A \oplus \Delta$

Generalized Free XOR:

Wire carries a truth value from \mathbb{Z}_{m}

Wire labels are tuples $\left(\mathbb{Z}_{m}\right)^{\lambda}$.
Global wire-label-offset $\Delta \in\left(\mathbb{Z}_{m}\right)^{\lambda}$

Wire label encoding truth value $a \in \mathbb{Z}_{m}$ is $A+a \Delta$

Generalized Free XOR ${ }_{[\text {BalMakliniposuletert] }}$

Free XOR:

Wire carries a truth value from $\{0,1\}$

Wire labels are bit strings $\{0,1\}^{\lambda}$.
Global wire-label-offset $\Delta \in\{0,1\}^{\lambda}$
false wire label is A true wire label is $A \oplus \Delta$
\oplus is componentwise addition mod 2

Generalized Free XOR:

Wire carries a truth value from \mathbb{Z}_{m}

Wire labels are tuples $\left(\mathbb{Z}_{m}\right)^{\lambda}$.
Global wire-label-offset $\Delta \in\left(\mathbb{Z}_{m}\right)^{\lambda}$

Wire label encoding truth value $a \in \mathbb{Z}_{m}$ is $A+a \Delta$

+ is componentwise addition $\bmod m$

Generalized Free XOR

Idea: Truth value $a \in \mathbb{Z}_{m}$ encoded by wire label $\underline{A+a \Delta} \in\left(\mathbb{Z}_{m}\right)^{\lambda}$

Generalized Free XOR

Idea: Truth value $a \in \mathbb{Z}_{m}$ encoded by wire label $A+a \Delta \in\left(\mathbb{Z}_{m}\right)^{\lambda}$

Generalized Free XOR

Idea: Truth value $a \in \mathbb{Z}_{m}$ encoded by wire label $\underline{A+a \Delta} \in\left(\mathbb{Z}_{m}\right)^{\lambda}$

$$
\left.\frac{A+a \Delta}{\overline{B+b \Delta}}\right) \sqrt[\mathbb{Z}_{m}]{ }
$$

Evaulator can simply add wire labels

Generalized Free XOR

Idea: Truth value $a \in \mathbb{Z}_{m}$ encoded by wire label $\underline{A+a \Delta \in\left(\mathbb{Z}_{m}\right)^{\lambda}}$

$$
\frac{A+a \Delta}{B+b \Delta}-\mathbb{Z}_{m}-C+(a+b) \Delta
$$

Evaulator can simply add wire labels \Rightarrow free garbled addition $\bmod m$

Generalized Free XOR

Idea: Truth value $a \in \mathbb{Z}_{m}$ encoded by wire label $\underline{A+a \Delta \in\left(\mathbb{Z}_{m}\right)^{\lambda}}$

$$
\left.\frac{A+a \Delta}{\overline{B+b \Delta}}\right) \mathbb{Z}_{m}-C+(a+b) \Delta
$$

Evaulator can simply add wire labels \Rightarrow free garbled addition $\bmod m$

- Free multiplication by public constant c, if $\operatorname{gcd}(c, m)=1$

Garbling unary gates

Garbling unary gates

- Different "preferred modulus" on each wire \Rightarrow different offsets Δ

Garbling unary gates

- Different "preferred modulus" on each wire \Rightarrow different offsets Δ

Garbling unary gates

- Different "preferred modulus" on each wire \Rightarrow different offsets Δ
- Cost: m ciphertexts
- Generalized point-and-permute: "color bit" from \mathbb{Z}_{m}

Garbling unary gates

- Different "preferred modulus" on each wire \Rightarrow different offsets Δ
- Cost: m ciphertexts ($m-1$ using standard row reduction)
- Generalized point-and-permute: "color bit" from \mathbb{Z}_{m}

Generalized garbling tools

We can efficiently garble any computation/circuit where:

- Each wire has a preferred modulus \mathbb{Z}_{m}
\Rightarrow Wire-label-offset Δ_{m} global to all \mathbb{Z}_{m}-wires
- Addition gates: all wires touching gate have same modulus \Rightarrow Garbling cost: free
- Mult-by-constant gates: input/output wires have same modulus \Rightarrow Garbling cost: free
- Unary gates: \mathbb{Z}_{m} input and \mathbb{Z}_{ℓ} output
\Rightarrow Garbling cost: $m-1$ ciphertexts

Generalized garbling tools

We can efficiently garble any computation/circuit where:

- Each wire has a preferred modulus \mathbb{Z}_{m}
\Rightarrow Wire-label-offset Δ_{m} global to all \mathbb{Z}_{m}-wires
- Addition gates: all wires touching gate have same modulus \Rightarrow Garbling cost: free
- Mult-by-constant gates: input/output wires have same modulus \Rightarrow Garbling cost: free
- Unary gates: \mathbb{Z}_{m} input and \mathbb{Z}_{ℓ} output
\Rightarrow Garbling cost: $m-1$ ciphertexts

Better basis for many computations than traditional boolean circuits!

Arithmetic computations

Example Scenario

Securely compute linear optimization problem on 32-bit values.
\Rightarrow Almost all operations are addition, multiplication, etc

Arithmetic computations

Example Scenario

Securely compute linear optimization problem on 32-bit values.
\Rightarrow Almost all operations are addition, multiplication, etc

"Standard approach"

- Represent 32-bit integers in binary
- Build circuit from boolean addition/multiplication subcircuits
- Garble with half-gates (AND costs 2, XOR costs 0)

Arithmetic computations

Example Scenario

Securely compute linear optimization problem on 32-bit values.
\Rightarrow Almost all operations are addition, multiplication, etc

"Standard approach"

- Represent 32-bit integers in binary
- Build circuit from boolean addition/multiplication subcircuits
- Garble with half-gates (AND costs 2, XOR costs 0)

	cost (\# ciphertexts)
addition	62
multiplication by public constant	758
multiplication	1200
squaring, cubing, etc	1864

Arithmetic computations

Using generalized garbling techniques:

- Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$

Arithmetic computations

Using generalized garbling techniques:

- Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	
squaring, cubing, etc	1864	

Arithmetic computations

Using generalized garbling techniques:

- Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free
- Multiplication mod m costs $2 m-2$ ciphertexts (generalization of half-gates)

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	
squaring, cubing, etc	1864	

Arithmetic computations

Using generalized garbling techniques:

- Think of arithmetic circuit: wires carry values in $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free
- Multiplication mod m costs $2 m-2$ ciphertexts (generalization of half-gates)

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	8589934590
squaring, cubing, etc	1864	4294967295

Arithmetic computations

instead of $\mathbb{Z}_{4294967296}$

$$
\downarrow
$$

use $\mathbb{Z}_{6469693230}$

Arithmetic computations

instead of $\mathbb{Z}_{4294967296}=\mathbb{Z}_{2^{32}}$ \downarrow
use $\mathbb{Z}_{6469693230}$

Arithmetic computations

instead of $\mathbb{Z}_{4294967296}=\mathbb{Z}_{2^{32}}$ \downarrow
use $\mathbb{Z}_{6469693230}=\mathbb{Z}_{2 \cdot 3 \cdot 5 \cdot 7 \cdots 29}$

Arithmetic computations

CRT residue number system!

- Generalized garbling scheme supports many moduli in same circuit
- Represent 32-bit integer x as $(x \% 2, x \% 3, x \% 5, \ldots, x \% 29)$
- Do all arithmetic in each residue (each with small modulus)

	standard	madness	
addition	62	0	
mult by public constant	758	0	
multiplication	1200	25769803776	
squaring, cubing, etc	1864	4294967296	

Arithmetic computations

CRT residue number system!

- Generalized garbling scheme supports many moduli in same circuit
- Represent 32-bit integer x as $(x \% 2, x \% 3, x \% 5, \ldots, x \% 29)$
- Do all arithmetic in each residue (each with small modulus)

	standard	madness	CRT
addition	62	0	$\mathbf{0}$
mult by public constant	758	0	$\mathbf{0}$
multiplication	1200	25769803776	$\mathbf{2 3 8} \approx 2(2+3+5+$
squaring, cubing, etc	1864	4294967296	$\mathbf{1 1 9}$

Challenges:

State of the art:

"If values are represented in CRT form then garbled operations are cheap."

Challenges:

State of the art:

"If values are represented in CRT form then garbled operations are cheap."

But doesn't it cost something to get values into CRT form??

Not so good:

- Converting from binary to CRT
- Getting CRT values into the circuit via OT

Kinda bad: (room for improvement)

- Comparing two CRT-encoded values
- Converting from CRT to binary
- Integer division
- Modular reduction different than the CRT composite modulus (e.g., garbled RSA)

Converting to CRT

Claim:

It's not hard to convert into CRT representation $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{k}}$

Converting to CRT

Claim:

It's not hard to convert into CRT representation $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{k}}$

From binary $b_{n} b_{n-1} \cdots b_{1} b_{0}$:

- For all i, j, use unary gate $b_{i} \mapsto b_{i}\left(\bmod p_{j}\right) \quad$ (1 ciphertext each)
- For all j, add to obtain $\sum_{i} b_{i} 2^{i}\left(\bmod p_{j}\right)$ (free)
- Total cost $=(\#$ primes $) \times(\#$ bits) (e.g., 320 ciphertexts for 32 bits)

Converting to CRT

Claim:

It's not hard to convert into CRT representation $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{k}}$

From binary $b_{n} b_{n-1} \cdots b_{1} b_{0}$:

- For all i, j, use unary gate $b_{i} \mapsto b_{i}\left(\bmod p_{j}\right) \quad$ (1 ciphertext each)
- For all j, add to obtain $\sum_{i} b_{i} 2^{i}\left(\bmod p_{j}\right)$
(free)
- Total cost $=(\#$ primes $) \times$ (\# bits) (e.g., 320 ciphertexts for 32 bits)

At the input level (e.g., OTs in Yao): (similar to [Gilboa99,KellerOrsiniScholl16])

- Outside of the circuit, convert plaintext input into CRT form
- Convert $\mathbb{Z}_{p_{j}-}$-residue to binary, and transfer it using $\left\lceil\log p_{j}\right\rceil$ OTs
- Total cost: $\sum_{j} \log p_{j}$ OTs
(e.g., 37 OTs for 32 -bit values)

Comparing CRT values

CRT view of $\mathbb{Z}_{2 \cdot 3 \cdot 5 \cdot 7}$:

Comparing CRT values

CRT view of $\mathbb{Z}_{2 \cdot 3 \cdot 5 \cdot 7}$:

0	0	0	0	0
1	1	1	1	1
2	2	2	0	
3	3	0	1	3
4	4	1	0	4
5	0	2	1	5
6	1	0	0	6
0	2	1	1	7

Theorem

CRT representation sucks for comparisons!

Comparing CRT values

CRT view of $\mathbb{Z}_{2 \cdot 3 \cdot 5 \cdot 7}$:

0000	0
1111	1
2220	2
3301	3
4410	4
5021	5
6100	6
0211	7
1421	29
2000	30

Comparing CRT values

CRT view of $\mathbb{Z}_{2 \cdot 3 \cdot 5 \cdot 7}$:
Primorial Mixed Radix (PMR)

0000	0	0	0
1111	1	1	1
2220	2	10	2
3301	3	11	3
4410	4	20	4
5021	5	21	5
6100	6	100	6
0211	7	101	7
:	:		
1421	29	421	29
2000	30	1000	30
:	:		

Approach for comparisons CRT values given \downarrow

Convert both CRT values to PMR

\downarrow

Compare PMR (simple $L \rightarrow R$ scan)

Approach for comparisons CRT values given

Convert both CRT values to PMR

PMR representation of x :
$\ldots,\left\lfloor\frac{x}{2 \cdot 3 \cdot 5}\right\rfloor \% 7, \quad\left\lfloor\frac{x}{2 \cdot 3}\right\rfloor \% 5, \quad\left\lfloor\frac{x}{2}\right\rfloor \% 3, \quad\lfloor x\rfloor \% 2$

\downarrow

Compare PMR (simple L \rightarrow R scan)

Approach for comparisons CRT values given

Convert both CRT values to PMR

Simple building block:

$$
(x \% p, \quad x \% q) \mapsto\left\lfloor\frac{x}{p}\right\rfloor \% q
$$

allows you to compute PMR representation of x :

$$
\ldots,\left\lfloor\frac{x}{2 \cdot 3 \cdot 5}\right\rfloor \% 7,\left\lfloor\frac{x}{2 \cdot 3}\right\rfloor \% 5, \quad\left\lfloor\frac{x}{2}\right\rfloor \% 3, \quad\lfloor x\rfloor \% 2
$$

\downarrow

Compare PMR (simple L \rightarrow R scan)
$(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\boldsymbol{x} \% 3$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$\boldsymbol{x} \% 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4

$$
\begin{array}{|l|lllllllllllllll}
\lfloor x / 3\rfloor \% & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 4 & 4
\end{array}
$$

$(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$x \% 3$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$x \% 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
$\boldsymbol{x \% 3 - x \% 5}$	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2

$\lfloor x / 3\rfloor \%$	5	0	0	0	1	1	1	2	2	2	3	3	3	4	4

1. Subtract $x \% 3-x \% 5$
$(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$x \% 3$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$x \% 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
$x \% 3-x \% 5$	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2

$\lfloor x / 3\rfloor$	$\%$	5	0	0	0	1	1	1	2	2	2	3	3	3	4

1. Subtract $x \% 3-x \% 5$
2. Result has the same "constant segments" as what we want
$(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$x \% 3$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$x \% 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
$x \% 3-x \% 5$	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
$(x \% 3-x \% 5) \% 7$	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
$\lfloor x / 3\rfloor \% 5$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract $x \% 3-x \% 5(\bmod 7$ is fine $)$
2. Result has the same "constant segments" as what we want

$(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$x \% 3$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$x \% 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
$x \% 3-x \% 5$	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
$(x \% 3-x \% 5) \% 7$	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
$\lfloor x / 3\rfloor \% 5$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract $x \% 3-x \% 5(\bmod 7$ is fine $)$

- "Project" $x \% 3$ and $x \% 5$ to \mathbb{Z}_{7} wires
- Subtract mod 7 for free

2. Result has the same "constant segments" as what we want

$(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$x \% 3$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$x \% 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
$x \% 3-x \% 5$	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
$(x \% 3-x \% 5) \% 7$	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
$\lfloor x / 3\rfloor \% 5$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract $x \% 3-x \% 5(\bmod 7$ is fine $)$

- "Project" $x \% 3$ and $x \% 5$ to \mathbb{Z}_{7} wires
- Subtract mod 7 for free

2. Result has the same "constant segments" as what we want

- Apply unary projection:

$$
\begin{array}{llll}
0 \mapsto 0 & 2 \mapsto 1 & 4 \mapsto 1 & 6 \mapsto 2 \\
1 \mapsto 3 & 3 \mapsto 3 & 5 \mapsto 4 &
\end{array}
$$

Approach for comparisons

1. General $(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$ gadget costs $\sim 2 p+2 q$ ciphertexts
2. PMR conversion requires this gadget between all pairs of primes
3. Total cost $O\left(k^{3}\right)$ for k-bit integers

Approach for comparisons

1. General $(x \% p, x \% q) \mapsto\lfloor x / p\rfloor \% q$ gadget costs $\sim 2 p+2 q$ ciphertexts
2. PMR conversion requires this gadget between all pairs of primes
3. Total cost $O\left(k^{3}\right)$ for k-bit integers

Operations on 32-bit integers:

	boolean	CRT
addition	62	0
multiplication by public constant	758	0
multiplication	1200	238
squaring, cubing, etc	1864	119
comparison	$\mathbf{6 4}$	$\mathbf{2 5 4 1}$

