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Abstract 
 

With the success of Pixar’s recent feature films, everyone knows RenderMan 
to be the leading photorealistic renderer for animation and entertainment.  
What most people don’t know is that it can also be used quite effectively as a 
direct volume renderer.  Many of the same qualities that make it excellent for 
entertainment rendering also make it excellent for displaying and animating 
volumes.  The fact that it is a commercial package that is well-supported and 
well-documented is an added bonus.  This paper shows how to use 
RenderMan in this way and shows several example images. 
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Introduction 
 
Direct volume rendering us a core tool in a 
visualizer’s toolkit.  By rendering the entire 
volume directly, the user can manipulate the 
transfer function to reveal key details in the 
volume dataset.  Direct volume rendering has 
included image-based approaches such as ray 
tracing [1], and object-based approaches such as 
splatting [2].  The direct volume rendering 
methods have all approached the problem with 
the idea that a quality rendering is more 
important than reducing the time necessary to get 
it. 
 
These methods, and others, are well-developed, 
but generally exist only in specialized research 
environments where they must be internally 
developed, maintained, and documented.  
Commercial direct volume rendering solutions 
are rare, and, where they exist, are quite costly. 
 
This project investigated the use of the 
RenderMan photorealistic rendering system as a 

direct volume renderer.  RenderMan is 
maintained and documented by Pixar [3,4].  It is 
stable.  It has considerable functionality and 
flexibility.  It is less expensive than commercial 
volume rendering packages.  There is even a no-
cost version available in the form of BMRT, the 
Blue Moon Rendering Tools [5]. 
 
 
Importing the Volume 
 
The first step in importing the volume dataset was 
to extract slices from the voxel data and map them 
into TIFF images.  Slice sets were taken 
throughout the entire dataset.  Three sets of slices 
were taken, each parallel to a principle axis, x, y, 
and z.  These TIFF images conserve the 
fundamental proprieties of the volume, 
specifically, color (R, G, B) and opacity (A).   
Because Prman (Pixar’s RenderMan) requires that, 
“all textures be in a special, proprietary texture 
format” [4], it is then necessary to convert every 
TIFF file to a format that Prman can understand, 
which can be accomplished by using the API call 
MakeTexture. 
 
Once the slices were pre-processed, they were 
mapped onto polygons. This was done with a 
RenderMan shader that maps the RGBA of the 
images and discards any properties of the polygon.   
Next, by positioning all of the slices of the volume 
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in the correct relation to each other, the actual 
dimensions of the original dataset were recreated.  
This was easily done by confining the slices to a 
depth (first slice to last) equal to the depth value of 
the volume dataset. However, if this was not done 
properly, a considerable amount of image warping 
occured.  This warping happened most when 
viewing the volume at angles approaching a 
parallel alignment with the slice planes.  The 
images were compressed or widened.  Therefore, it 
were important to use high precision when 
calculating the slice offsets.  This composition of 
slices works as one object within the scene.  The 
notion of slices then became completely 
transparent to the user. 
 
Once the data was imported, a unique problem 
arose.  When the viewing position became parallel 
with the slicing planes, the volume could no longer 
be seen, not looking through a group of composite 
slices but looking directly between the slices.  To 
solve this problem we needed to track exactly 
where the viewer was located in relation to the 
volume and to decide which slicing plane is best 
suited for this location.  The Threshold area, as 
shown in Figure 1., occurs at angles where the 
appropriate slicing plane to composite is 
disputable.   

 
Figure 1: Threshold Viewing Direction 

 
When the volume dataset was imported into a 
RenderMan scene, it then became possible to 
apply any of RenderMan’s countless features to 
the volume.  This was one of the major reasons to 
undertake this project.  In this paper we have listed 
a few of these key features to produce real working 
examples.   
 
 
Application: Arbitrary Viewing Angle, 
With or Without Perspective 
 
Using the threshold viewing direction method 
shown above, the volume can be rendered from 
any location with no loss in quality.  Also, because 
the volume is mapped onto RenderMan geometry, 
it can be displayed in either orthographic or 

perspective projections.  The ability to display a 
direct-rendered volume in perspective is not easy 
for many volume rendering packages.  But, 
because RenderMan pre-fractures the scene into 
the appropriate number of microfacets for the 
given viewing volume, here it comes 
automatically.      Figures 2a-2d show a human 
head dataset viewed in perspective from 0°, 15°, 
30°, and 45°. 
 
 
 
 
Application: Arbitrary Resolution 
 
RenderMan renders its scene at an arbitrary 
resolution specified by the user.  When that scene 
includes texture maps, such as in this case, most 
display systems resort to bilinear interpolation to 
produce color values between the texels.  
RenderMan, instead, uses a bicubic interpolation.  
The result is a very consistent image, regardless of 
the resolution.  Figures 3a-3c show the same 
human head dataset rendered at 5002, 10002, and 
20002 pixels.  While the quality clearly increases, 
the smoothness of the 5002 image is more than 
adequate. 
 
Incidentally, the arbitrary resolution-ness of 
RenderMan extends to the size of the texture maps 
as well.  This means that volume datasets of 
arbitrary size can be rendered with no change in 
the method, albeit with a cost in time. 
 
 
Application: Shadows 
 

“Shadows provide very important 
visual cues in the images we see. They 
clearly show the physical relationship 
and proximity of different objects. 
Rendering a 3D scene with shadows 
can provide almost as much information 
as a pair of stereo images” [6] 

 
In general, direct volume rendering tends to leave 
out shadows because of the immense complexity 
of this task, even though shadows provide many 
useful applications in scientific visualization.  
 
Creating shadows from volumes using RenderMan 
requires the help of both Prman and BMRT.  The 
Blue Moon Rendering Tools, or BMRT for short 
[5], is a RenderMan-compatible renderer that 
provides extra features such as ray tracing and 
radiosity.   Ray traced shadows from BMRT 
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enable the volume to produce correct shadows by 
taking into account the opacity values throughout 
the volume slices.  Prman primary handles 
shadows using Shadow Maps.  Though this 
approach is much faster than that of BMRT, this 
technique can only take into account the geometry 
of the object.   Therefore this would produce 
shadows of only the polygon slices. 
 
By setting the shadow attributes to “on” in a 
BMRT attribute call, the user can automatically 
cast shadows in the final rendered scene.  
However, as stated above, this process alone can 
be very time consuming.  A better approach is to 
use Prman for the bulk of the scene computations 
and BMRT for the ray tracing.  This can be 
conveniently done using what is called a “ray 
server”.   Prman can send queries that need to be 
executed to the “ray server”(BMRT) through stdin.  
The “ray server” will then compute the result and 
return back to Prman through stdout.  With this, 
the best features of both renderers are used to 
efficiently produce accurate shadows of volumes.  
Figure 4 shows an example of a volume dataset 
that has a spotlight placed in front and casting a 
shadow onto the back wall.  
 
 
Application: Motion Blur 
 
Motion blur can be easily applied to any volume 
using RenderMan.  This effect introduces another 
aspect of realism, which is traditionally not applied 
to volume datasets.   Using RenderMan’s unique 
set of API calls, it is simple for the user to create 
an animated sequence of a volume using the same 
properties as a live-action camera.  Using an 
arbitrary time scale (user defined), specify when 
the camera should open and close its shutter.  
Depending on the transformations applied during 
these shutter intervals RenderMan will 
automatically produce the correct, realistic effect.  
Figure 5 shows an example of motion blur applied 
to a volume dataset. 
 
At first glance this looks like a gratuitous use of 
fun graphics, but in fact it is actually useful.  
Motion blur is basically a smeared interpolation 
from one dataset and transformation to another 
dataset and transformation.  Thus, when working 
with a time-based set of volumes, this would be a 
way to show the transition across volume 
sequences in a single output image, or a way to 
smoothly transition in an animation. 
 

 

Application: Depth of Field 
 
Similar to motion blur, depth of field is another 
feature of RenderMan which can be applied to a 
volume dataset to achieve images that traditionally 
could not be easy created.  By using the API call 
DepthfField, one can simulate the features of a 
live-action camera: length of the lens, the distance 
at which the camera is focused, and the diameter 
of the aperture (f-stop).  Figure 7a-d shows a series 
of images with depth of field applied at various 
distances. 
 
Application: Procedural Shading of Volumes 
 
Another feature we gain by importing volumes 
into RenderMan comes out of one of RenderMan’s 
most important features, the shader.  A shader is 
written in the RenderMan Shading Language and 
is a way to procedurally define the interactions of 
lights and surfaces.  
 
There are five basic types of shaders.  These are: 
surface, displacement, light, volume, and imager 
shaders.  The general way a shader works is as 
follows.  First there is an assortment of global 
values that are passed into the main shader routine.   
These values specify attributes such as point 
surface color and surface opacity.  In our case the 
only values that we immediately find important are 
the texture maps color and opacity values.  Then 
within the shader we are able to manipulate these 
values in any way.  The final goal of each pass of 
the shader is to assign this input color and opacity 
to an output color and opacity. 

 
In the most basic case this occurs when a texture is 
placed onto a surface with no alterations.  The 
input color and opacity for each point of the 
texture is procedurally placed onto the polygons 
surface with the shader.  
  
A more creative approach would be to apply 
transformations to the input color and opacity to 
produce interesting images.  For example, you 
could write an unlimited number of shaders, from 
glass to wood surfaces, etc.   
 
 
Speed  
 
One problem that exists for volume rendering, and 
rendering in general, is the amount of time it might 
take to compute one single image.  It would be 
very useful to have a method of approximating 
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images initially to preview what the final frame 
will look like.  With RenderMan this functionality 
is built in and can be easily used. 
 
There are four options in particular that are useful 
for our purposes; pixel filter, shading rate, number 
of samples and final image resolution.  The pixel 
filter takes the rendered image and smoothes out 
the 2D frame.  The larger the pixel filter the softer 
the result becomes.  Shading rate can be described 
as the “number of shading calculations per 
primitive.“ [3] Because imported volume data has 
such a large reliance on shading, increasing the 
shading rate significantly speeds up the time it 
takes to render a frame, although, a noticeable 
increase of texture artifacts can be noticed.  The 
number of samples is the “effective sampling rate 
in the horizontal and vertical directions.” [3] 
RenderMan will take slightly jittered pixel samples 
and average there values together.   Using a call to 
Format one can control the output image 
resolution.  The time to render an entire image is 
closely related to the number of pixels in the 
scene.  “Rendering a 256x256 image will take 
approximately one quarter the time required to 
compute a 512x512 equivalent.”  [7] 
 
For low-quality images suitable for previewing a 
scene’s geometry, we found that a pixel filter 
width (1, 1) a shading rate of 16 and sampling rate 
of (1, 1) are sufficient enough to achieve a relative 
fast output.  For high-quality renderings we used 
approximately a pixel filter of (6, 6) a shading rate 
of 1 and a sample rate of (10, 10). 
 
Conclusion 
 
In this paper we have presented the general 
strategy of importing volume datasets into 
RenderMan and a description of some of the most 
useful tools this empowers us with.   The 
advantages in this are: 
 
• Arbitrary input voxel resolution 
 
• Arbitrary pixel image resolution 
 
• Arbitrary viewing parameters, including 

perspective projection 
 
• Able to combine a volume and hard geometry 

in the same scene 
 
• Shadows 
 

• Motion blur 
 
• Depth of field 
 
By harnessing the features and stability of 
RenderMan, we have been able to achieve high-
quality images of volume datasets without the 
need for custom software.  On top of this, we have 
also gamed the ability to produce images with 
features that were not generally available for 
volume graphics such as shadows and motion blur. 
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Note to reviewers: We are currently 
working on an animation using these methods.  It 
is looking very promising!   If this paper is 
accepted, we will show the videotape in the 
presentation at the conference.
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Figures 2a-d: Volume Dataset Viewed from 0°, 15°, 30°, and 45° 

 

     
Figures 3a-c: Detail of Head Rendering at 5002, 10002, and 20002 Pixel Resolution

 
 

    
 Figure 4: Figure 5: Figure 6: 
 Volume Shadows Volume Motion Blur 3D LIC Volume 

 

       
Figures 7a-d: Combining Volume with Hard Geometry and Displaying with Depth-of-Field 

 


