
Bailey and Clark  1 

Encoding 3D Surface Information 
in a Texture Vector 

 
 

Michael Bailey 
Dru Clark 

 
University of California at San Diego and San Diego Supercomputer Center1 

 
Abstract 
 

A novel use of texture mapping is described. Surface scalar information, in this case 
the surface normal, is used as the 3D texture vector which is then transformed by the 
global rotation matrix to keep the normal oriented with the part, and by a special 
matrix that is used to isolate just the Z component of the transformed normal. The 
result is fast surface color fluctuations that are used within a human-in-the-loop 
interactive system for optimizing mechanical part orientation for fabrication. 

 
 
The Problem 
 
The UCSD/SDSC TeleManufacturing Facility (TMF) project has integrated a solid freeform 
fabrication (SFF) capability with the Internet to make the production of prototype parts easy and 
convenient ([BAILEY95]).  As a result, manufacturing “amateurs,” such as biologists, chemists, 
ecologists, geologists, and mathematicians are able to produce 3D solid models to better visualize 
their work. 
 
The TMF is using a Laminated Object Manufacturing (LOM) machine from Helisys, Inc. 
[HELISYS97].  In the LOM process, the 3D object is made from layers of .0042” thick paper.  In the 
LOM process, new paper is spooled into place and laminated to the layers beneath it with a hot 
roller.  A laser cuts the part outlines at this level.  The outlines are essentially the contour lines for 
this height on the 3D object.  The process continues until the 3D part is completed.  (See 
[BAILEY96] for more information on this and other SFF processes.) 
 
After the laser cuts the part outlines, it needs to do something with the portion of this layer that is not 
part of the object being fabricated.  This portion of the layer cannot be made to “fall away” on its 
own like some of the liquid-based SFF processes, so the LOM process crosshatches it as scrap.  
Layer-after-layer of this scrap is built up.  These scrap “columns” must then be plucked from the 
resulting part after it is completed.  A part in various stages of de-scrapping is shown in Figure 1.  
Some of these scrap columns fall away trivially, but some are so difficult to remove that one ends up 
accidentally ripping some paper that was meant to belong to the part’s exterior surface.  Clearly 
having the scrap fall away trivially is a major requirement for a quality part. 
 
                                                 
1 Authors’ address: 
 PO Box 85608 
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Bailey and Clark  2 

 
 

Figure 1: Various Stages of LOM De-scrapping 
 
The ease with which a scrap column falls away is a function of how weak the connection is between 
the base of the column and the part exterior.  This in turn is proportional to the density of contour 
lines at the base-part interface.  The more contour lines, the more likely the scrap column will just 
fall off.  From our experience, a contour line density of about 100 lines/linear inch will make this 
scrap column weak enough to fall off easily and preserve the quality of the part exterior. 
 
We needed a graphical method to visually represent the de-scrapping difficulty so we could 
optimally orient a part.  It could not require the application to do much computing between 
reorientations.  With models typically having 100,000-300,000 polygons, this would have made the 
interactive response too slow to be useful. 
 
 
Theory 
 
Without loss of 3D generality, we will look at this problem in 2D by treating the vertical height as 
ΔZ and treating the horizontal distance as ΔH = ΔX 2 + ΔY 2 .  The contour line density is then related to 
the slope of the part surface. This is well known to anyone who has used a topographic hiking map.  
Regions with very dense contour lines represent a steep slope. 
 
The equation for the total number of contours produced as a function of total height and paper 
thickness is: 
 NCL = ΔZ / t (1) 
where: 

NCL is the number of contour lines 
ΔZ is the total height 
t is the paper layer thickness = 0.0042” 

 
 
Dividing by the horizontal run distance gives the contour line density function: 
 



Bailey and Clark  3 

 CLD = NCL / ΔH = ( ΔZ / ΔH ) / t (2) 
or 
 CLD = tanΘ / t (3) 
 
where: 

CLD is the contour line density 
Θ is the slope angle ΔZ/ΔH 

 
The surface normal perpendicular to this slope is the vector (–ΔZ,ΔH).  The Z component of this un-
unitized surface normal is ΔH.  Looking at equations (2) and (3), the Z component of the unitized 
surface normal is: 
 
 nz =

ΔH
ΔH2 + ΔZ 2

 (4) 

or 
 nz = cosΘ (5) 
 
The contour line density as a function of surface normal is then: 
 
 CLD =

1 − nz2

t * nz
 (6) 

 
 
Implementation 
 
This method was implemented in OpenGL.  Most OpenGL programmers are familiar with the 2D 
texture coordinates (s,t) and the texture matrix.  The typical way to use texture mapping is to specify 
an (s,t) pair at each polygon vertex and possibly use the texture matrix to rotate or scale (s,t) to 
become (s’,t’), which then index into the texture image during display update. 
 
A lesser-known feature of OpenGL texturing is that it can use 4D texture coordinates, each specified 
by an (s,t,r,q) quadruple.  These are passed through the 4x4 homogeneous texture matrix as follows: 
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 (7) 

 
In the same way that homogeneous vertex coordinates are handled, the elements (s’,t’,r’) are each 
divided by q’ before use. (s’t’) are then used to index into the texture image.  Currently, the resulting 
r’ value is ignored, although [NEIDER93] says that there might be some use for it in the future. 
 
In this method, the (s,t,r,q) quadruple was specified to be the unitized surface normal (nx,ny,nz,1.).  
The texture matrix was two concatenated matrices, one to rotate the normal the same amount as the 
part has been rotated, and one to turn the rotated Z component of the surface normal into the proper 
texture coordinates.  We established a 256x1 pixel texture where the colors were used to represent 
the de-scrapping difficulty.  Even though this is a texel coordinate range of 0-255, OpenGL defines 
this as 0. to 1.  So, a matrix was needed to linearly map a rotated nz in the range -1. to 1. to a texture 
s coordinate in the range 0. to 1. so that it could index a color.  The equation to do this is: 
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 s’ = .5*nz’ + .5 (8) 
 
 
The complete concatenated texture matrix would then need to be: 
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 (9) 

 
The range of colors in the texture corresponded to a range of Z normal components of -1. to 1.  To 
establish colors, a general definition of a “bad” Z component had to be established. From experience 
we knew that a CLD of 100 or more (which corresponds to nz ≤ 0.922) made de-scrapping easy.  To 
these values, we assigned green.  We then ramped the hue from green to red in the hue-saturation-
value color space as CLD decreased from 100 to 0.  This gave us good green-to-yellow-to-red 
behavior when the contour line density dropped below 100 per inch.  
 
The unitized surface normals were used as the 3D texture coordinates inside the OpenGL triangle 
lists.  The entire object was placed in a single OpenGL display list to make it fast to update the 
display whenever the part orientation changed. 
 
 
Results 
 
Figure 2 shows a lens base for a lighting system that was submitted for fabrication.2   As a prototype 
part, it was desirable to screw the lens caps onto the threads to be sure that they would fit without 
any interference.  Thus, the threads needed to be the highest quality portion of the part, possibly at 
the expense of the surface quality of the base. 
 
But, as Figure 2 shows, the original orientation of the part resulted in the difficult de-scrapping 
region being right in the middle of the threads.  This means that the most delicate and crucial portion 
of the prototype would be the place with the most torn-up surface finish. The part was dynamically 
reoriented using the method described until the colors showed that the threads would be easy to de-
scrap.  This is shown in Figure 3. 
 
But, of course, reorientation cannot make all of the horizontal difficult areas go away, it can just 
move them to somewhere else.  Rotating the view shows where they have gone.  In Figure 4, the 
difficult area has moved to the other side, but it is along the rim and at the base of the threads.  This 
is acceptable as it will not hurt the threads.  If re-orienting the part simply moved the difficult area to 
another crucial place in the model, then we would have continued to iterate until the most acceptable 
solution was found.  The finished part is shown in Figure 5. 
 
 
 

                                                 
2 This part was designed by UCSD Masters student Mike Arnstein using the Pro/Engineer solid modeler. 



Bailey and Clark  5 

   
 

Figure 2: The Difficult De-scrapping Area is in a Bad Place 
 
 

   
 

Figure 3: A Better Orientation for a Quality Finish on the Threads 
 
 

   
 

Figure 4: The Difficult De-scrapping Area has Moved to a Better Place 
 
 



Bailey and Clark  6 

 
 

Figure 5: Finished Part with a Fitting on One of the Threads 
 
Summary and Future Work 
 
This method is not just another use of color to represent scalar values.  This method turns the scalar 
value into a texture coordinate that uses a dynamic OpenGL texture matrix to change the color 
distribution with part orientation.  The significance of this approach is: 

 
• The entire part can be placed in a static display list because it does not have to be altered 

between reorientations. 
 
• This method takes advantage of the ubiquitous texture-mapping acceleration that is appearing 

in all levels of graphics systems. 
 
We believe that there are even more less-than-obvious uses for the 3D OpenGL texture coordinates 
beyond this one. One that is of particular interest to us is to encode a “peak-ness” length and 
direction into a 3D texture vector to help orient the part so that long thin protrusions do not get built 
vertically (where they act like a weak “stack of checkers”) and instead get built horizontally (where 
they act like a very strong set of laminated cantilever beams). 
 
 
Web Page 
 
For more information see:  http://www.sdsc.edu/tmf 
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