
Bailey and Clark 1

Encoding 3D Surface Information
in a Texture Vector

Michael Bailey
Dru Clark

University of California at San Diego and San Diego Supercomputer Center1

Abstract

A novel use of texture mapping is described. Surface scalar information, in this case
the surface normal, is used as the 3D texture vector which is then transformed by the
global rotation matrix to keep the normal oriented with the part, and by a special
matrix that is used to isolate just the Z component of the transformed normal. The
result is fast surface color fluctuations that are used within a human-in-the-loop
interactive system for optimizing mechanical part orientation for fabrication.

The Problem

The UCSD/SDSC TeleManufacturing Facility (TMF) project has integrated a solid freeform
fabrication (SFF) capability with the Internet to make the production of prototype parts easy and
convenient ([BAILEY95]). As a result, manufacturing “amateurs,” such as biologists, chemists,
ecologists, geologists, and mathematicians are able to produce 3D solid models to better visualize
their work.

The TMF is using a Laminated Object Manufacturing (LOM) machine from Helisys, Inc.
[HELISYS97]. In the LOM process, the 3D object is made from layers of .0042” thick paper. In the
LOM process, new paper is spooled into place and laminated to the layers beneath it with a hot
roller. A laser cuts the part outlines at this level. The outlines are essentially the contour lines for
this height on the 3D object. The process continues until the 3D part is completed. (See
[BAILEY96] for more information on this and other SFF processes.)

After the laser cuts the part outlines, it needs to do something with the portion of this layer that is not
part of the object being fabricated. This portion of the layer cannot be made to “fall away” on its
own like some of the liquid-based SFF processes, so the LOM process crosshatches it as scrap.
Layer-after-layer of this scrap is built up. These scrap “columns” must then be plucked from the
resulting part after it is completed. A part in various stages of de-scrapping is shown in Figure 1.
Some of these scrap columns fall away trivially, but some are so difficult to remove that one ends up
accidentally ripping some paper that was meant to belong to the part’s exterior surface. Clearly
having the scrap fall away trivially is a major requirement for a quality part.

1 Authors’ address:
 PO Box 85608
 San Diego, CA 92186
 mjb@sdsc.edu
 dru@sdsc.edu

Bailey and Clark 2

Figure 1: Various Stages of LOM De-scrapping

The ease with which a scrap column falls away is a function of how weak the connection is between
the base of the column and the part exterior. This in turn is proportional to the density of contour
lines at the base-part interface. The more contour lines, the more likely the scrap column will just
fall off. From our experience, a contour line density of about 100 lines/linear inch will make this
scrap column weak enough to fall off easily and preserve the quality of the part exterior.

We needed a graphical method to visually represent the de-scrapping difficulty so we could
optimally orient a part. It could not require the application to do much computing between
reorientations. With models typically having 100,000-300,000 polygons, this would have made the
interactive response too slow to be useful.

Theory

Without loss of 3D generality, we will look at this problem in 2D by treating the vertical height as
ΔZ and treating the horizontal distance as ΔH = ΔX 2 + ΔY 2 . The contour line density is then related to
the slope of the part surface. This is well known to anyone who has used a topographic hiking map.
Regions with very dense contour lines represent a steep slope.

The equation for the total number of contours produced as a function of total height and paper
thickness is:
 NCL = ΔZ / t (1)
where:

NCL is the number of contour lines
ΔZ is the total height
t is the paper layer thickness = 0.0042”

Dividing by the horizontal run distance gives the contour line density function:

Bailey and Clark 3

 CLD = NCL / ΔH = (ΔZ / ΔH) / t (2)
or
 CLD = tanΘ / t (3)

where:

CLD is the contour line density
Θ is the slope angle ΔZ/ΔH

The surface normal perpendicular to this slope is the vector (–ΔZ,ΔH). The Z component of this un-
unitized surface normal is ΔH. Looking at equations (2) and (3), the Z component of the unitized
surface normal is:

 nz =

ΔH
ΔH2 + ΔZ 2

 (4)

or
 nz = cosΘ (5)

The contour line density as a function of surface normal is then:

 CLD =

1 − nz2

t * nz
 (6)

Implementation

This method was implemented in OpenGL. Most OpenGL programmers are familiar with the 2D
texture coordinates (s,t) and the texture matrix. The typical way to use texture mapping is to specify
an (s,t) pair at each polygon vertex and possibly use the texture matrix to rotate or scale (s,t) to
become (s’,t’), which then index into the texture image during display update.

A lesser-known feature of OpenGL texturing is that it can use 4D texture coordinates, each specified
by an (s,t,r,q) quadruple. These are passed through the 4x4 homogeneous texture matrix as follows:

s'
t '
r'
q'

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=
Texture
Matrix

⎡
⎣ ⎢

⎤
⎦ ⎥ *

s
t
r
q

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 (7)

In the same way that homogeneous vertex coordinates are handled, the elements (s’,t’,r’) are each
divided by q’ before use. (s’t’) are then used to index into the texture image. Currently, the resulting
r’ value is ignored, although [NEIDER93] says that there might be some use for it in the future.

In this method, the (s,t,r,q) quadruple was specified to be the unitized surface normal (nx,ny,nz,1.).
The texture matrix was two concatenated matrices, one to rotate the normal the same amount as the
part has been rotated, and one to turn the rotated Z component of the surface normal into the proper
texture coordinates. We established a 256x1 pixel texture where the colors were used to represent
the de-scrapping difficulty. Even though this is a texel coordinate range of 0-255, OpenGL defines
this as 0. to 1. So, a matrix was needed to linearly map a rotated nz in the range -1. to 1. to a texture
s coordinate in the range 0. to 1. so that it could index a color. The equation to do this is:

Bailey and Clark 4

 s’ = .5*nz’ + .5 (8)

The complete concatenated texture matrix would then need to be:

s'
t '
r'
q'

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

0. 0. .5 .5
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 1.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

*
Rotation
Matrix

⎡
⎣ ⎢

⎤
⎦ ⎥ *

nx
ny
nz
1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 (9)

The range of colors in the texture corresponded to a range of Z normal components of -1. to 1. To
establish colors, a general definition of a “bad” Z component had to be established. From experience
we knew that a CLD of 100 or more (which corresponds to nz ≤ 0.922) made de-scrapping easy. To
these values, we assigned green. We then ramped the hue from green to red in the hue-saturation-
value color space as CLD decreased from 100 to 0. This gave us good green-to-yellow-to-red
behavior when the contour line density dropped below 100 per inch.

The unitized surface normals were used as the 3D texture coordinates inside the OpenGL triangle
lists. The entire object was placed in a single OpenGL display list to make it fast to update the
display whenever the part orientation changed.

Results

Figure 2 shows a lens base for a lighting system that was submitted for fabrication.2 As a prototype
part, it was desirable to screw the lens caps onto the threads to be sure that they would fit without
any interference. Thus, the threads needed to be the highest quality portion of the part, possibly at
the expense of the surface quality of the base.

But, as Figure 2 shows, the original orientation of the part resulted in the difficult de-scrapping
region being right in the middle of the threads. This means that the most delicate and crucial portion
of the prototype would be the place with the most torn-up surface finish. The part was dynamically
reoriented using the method described until the colors showed that the threads would be easy to de-
scrap. This is shown in Figure 3.

But, of course, reorientation cannot make all of the horizontal difficult areas go away, it can just
move them to somewhere else. Rotating the view shows where they have gone. In Figure 4, the
difficult area has moved to the other side, but it is along the rim and at the base of the threads. This
is acceptable as it will not hurt the threads. If re-orienting the part simply moved the difficult area to
another crucial place in the model, then we would have continued to iterate until the most acceptable
solution was found. The finished part is shown in Figure 5.

2 This part was designed by UCSD Masters student Mike Arnstein using the Pro/Engineer solid modeler.

Bailey and Clark 5

Figure 2: The Difficult De-scrapping Area is in a Bad Place

Figure 3: A Better Orientation for a Quality Finish on the Threads

Figure 4: The Difficult De-scrapping Area has Moved to a Better Place

Bailey and Clark 6

Figure 5: Finished Part with a Fitting on One of the Threads

Summary and Future Work

This method is not just another use of color to represent scalar values. This method turns the scalar
value into a texture coordinate that uses a dynamic OpenGL texture matrix to change the color
distribution with part orientation. The significance of this approach is:

• The entire part can be placed in a static display list because it does not have to be altered

between reorientations.

• This method takes advantage of the ubiquitous texture-mapping acceleration that is appearing

in all levels of graphics systems.

We believe that there are even more less-than-obvious uses for the 3D OpenGL texture coordinates
beyond this one. One that is of particular interest to us is to encode a “peak-ness” length and
direction into a 3D texture vector to help orient the part so that long thin protrusions do not get built
vertically (where they act like a weak “stack of checkers”) and instead get built horizontally (where
they act like a very strong set of laminated cantilever beams).

Web Page

For more information see: http://www.sdsc.edu/tmf

Acknowledgments

This work was supported by the National Science Foundation under grant MIP-9420099.

Bailey and Clark 7

Authors

Mike Bailey is the director of the TeleManufacturing Facility project. Mike received his Ph.D. from
Purdue University in Mechanical Engineering with an emphasis on computer aided engineering and
computer graphics. Since that time, Mike has taught and conducted research at Sandia National
Labs, Purdue University, Megatek Corporation, and the University of California at San Diego / San
Diego Supercomputer Center. His research interests include Internet-based scientific visualization,
solid freeform fabrication, and computer integrated mechanical engineering.

Dru Clark is a masters student in Applied Mechanics and Engineering Sciences at the University of
California at San Diego and a student researcher on the TMF project at SDSC. His research interests
are prototyping techniques for engineering and scientific visualization, modeling, and animation.

References

[BAILEY95]
 Michael Bailey, “Tele-Manufacturing: Rapid Prototyping on the Internet with Automatic

Consistency-Checking,” IEEE Computer Graphics and Applications, November 1995.

[BAILEY96]
 Michael Bailey, “The Use of Solid Rapid Prototyping in Computer Graphics and Scientific

Visualization, ” SIGGRAPH Course Notes for The Use of Touch as an I/O Device for Graphics
and Visualization, August 1996.

[HELISYS97]
 Laminated Object Manufacturing product literature, Helisys, Inc., Torrence, CA, 1997.

[NEIDER93]
 Jackie Neider, Tom Davis, and Mason Woo, OpenGL [1.0] Programming Guide, Addison-

Wesley, 1993.

