
 1

Shapes: Allowing K-12 Students to Work in 3D

 Mike Bailey Steve Lukas Rozeanne Steckler
 Oregon State University Soapbox Mobile, Inc. Oregon State University

Teapots Galore

Abstract

Students of all ages are motivated to learn to
think and work in 3D. They see it in movies
such as The Incredibles and Chicken Little.
They see it in television shows such as Max
Steel and Jimmy Neutron. They see it in their
video games. It is an integral part of their world.
It makes sense, then, that they can be taught the
essence of 3D graphics by letting them create
their own 3D scenes. This paper presents a
program called shapes. It allows kids of all ages
to create their own 3D scenes that are interesting
and compelling. By gently and subtly weaving
Cartesian coordinates throughout the program,
the kids learn about X, Y, and Z without even
knowing they are learning it.

Goals

We had two goals in mind when creating shapes.
One was to get K-12 students interested in
computers as a means to create something. So
much of kids’ exposure to computers is in the
form of video games, where too often the plot is
to destroy something or someone. We were also
trying to show a side of the computer as an aid

to the creative process of building something.
We wanted a program that we could point to and
talk about possible careers in engineering,
design, animation, game development, and art.

The second goal was to teach Cartesian
coordinates. All school kids will see this
eventually. We felt that we could show it to
them early, and in a more enticing way than they
would ever see in school. Kids seem to be
thrilled when they learn how something really
works. This would be our chance to sneak a
little computer graphics math into their way of
thinking.

Using shapes

Shapes allows the user to select one of seven
basic geometric primitives:

• Sphere
• Box
• Cylinder
• Cone
• Torus
• Icosahedron
• Teapot

 2

When selected, the object appears in white in a
default size at the origin, as shown here. From
there, it can have a color assigned to it. It can be
toggled between wireframe and solid. Best of
all, it can be edited.

The Default is a White Shape at the Origin

All objects in the scene have an Edit button.
When pressed, the user is presented with a
dialog box that allows the shape to be re-
positioned in X, Y, and Z. The object can be
rotated about any axis. It can also be non-
uniformly scaled. Some of the objects have
specific editing controls, such as the cone’s base
radius shown here.

Editing a Cone

Editing controls are all buttons, sliders, and
checkboxes. We created our own user interface
widgets from OpenGL calls to guarantee both
portability and consistency across operating
system implementations.

Animation

Animation comes about through interpolating
two state vectors. A state vector is the set of all
parameters that define the current scene. This
interface is shown below.

Animation Menu

The user puts the scene in one state consisting of
shapes, positions, rotations, scales, and colors,
and hits the first Record button. She then places
the scene in another state and hits the second
Record button. Hitting the Play button then
interpolates between the two, possibly forward
only, possible forward-and-backwards. The
following figures show a “transformer”
animation – part robot, part truck.

Animating Optimus the Transformer

Some Scene Examples

These are some of our favorite scenes that have
been created over the course of the last few
years.

 3

All were created by various students, with the
exception of the last one which was created by
one of the school teachers who was
experimenting with using shapes to explain
conic sections.

Examples of Scenes Created Using shapes

Experience

We have used the shapes program in a variety of
outreach programs, including those for high
school, middle school, lower school, and even
Kindergarten. We have used it for both Girl
Scout Computer Badge days and for the Boy
Scout computer merit badge. We have used it
for Take-Our-Children-To-Work-Day events.

This photo
shows a 6-
year-old
using
shapes.
Our
experience
is that any
child above
around age 5 can learn 3D because they are
highly motivated to do so, and because shapes’
simplicity makes it so effortless. The barrier to
entry for the kids below age 5 does not appear to
be the 3D, but not yet knowing how to read the
words in the interface.

Understanding the concept of Cartesian
coordinates does not seem to be a barrier to
entry. Many times, students came in already
knowing X and Y from school. In these cases,
extending their understanding into Z is only a
small jump. What about those who have never
heard about any coordinate system? So far, we
have never found that to be a problem. The kids
are so motivated to want to make their own 3D
scene that they don’t hesitate to try. And, even

 4

if they are not completely able to predict in
advance which direction X, Y, and Z are, they
keep positioning or rotating in different
directions until they get it right. After a while,
they seem to “get” the coordinate system,
without even realizing that they have learned it.

Junior-level Girl Scouts at a

Computer Badge Day

The biggest problem the students seem to have
with working in 3D is the same problem that
adults have: the ambiguity of lining things up.
The kids will meticulously place one 3D item on
top of another, only to rotate the scene and find
that the two shapes are widely separated. To
alleviate this frustration, editing a shape
automatically causes a large 3D cursor to be
attached to the object being edited. In this way,
the students can see what it will take to move
this object to a specific location with respect to
another, in this example, moving the red sphere
to the same Y-level as the green torus. This
seems to alleviate the bulk of the students’
frustrations with 3D.

A 3D Cursor Aids in Alignment

Implementation

Shapes is written in C++ using OpenGL
[Shreiner2005] for the graphics, and GLUT
[Glut2006] for the window interface. Thus,
shapes can be recompiled for Windows, Linux,
UNIX, or Macintosh. The only specific
operating system concession is that the
Windows version uses CFileDialog from the
Microsoft Foundation Classes for selecting files
to save, load, or write an image into.

Conclusions

The best learning takes place when students
teach the material to themselves, and don’t even
realize that they have learned something. This is
the case here. Very young kids have made
unexpectedly sophisticated scenes, while having
no prior experience with coordinate systems or
3D.

Shapes seems to be especially effective for
working with girls. Girls, in particular, seem to
like the sense of building something, rather than
shooting at it or blowing it up. Interestingly, we
have not noticed any boy/girl differences in how
well the kids can think and work in 3D.
Conventional wisdom says that boys have better
spatial reasoning than girls, but we haven’t seen
it. If that is true, then perhaps the right tools
make up the gap.

 5

We call this type of learning “Trojan Horse
Education”. The information ends up in the
students’ brains, but it snuck in disguised as fun.
And, like the original Trojan Horse, the

recipients do most of the
work bringing it in.

Getting shapes

There are versions of shapes for Windows,
Linux, and Macintosh. To get the shapes
program and the documentation, go to:

http://eecs.oregonstate.edu/~mjb/shapes

References

GLUT2006

http://www.opengl.org/resources/libraries/gl
ut.html

SHREINER2005 Dave Shreiner, Mason Woo,

Jackie Neider, and Tom Davis, OpenGL
Programming Guide, 5th Edition, Addison-
Wesley, 2005.

