
   

Video
Driver

CPU

Input
Devices

Double-buffered
Framebuffers

Rasterizer

Vertex
Processor

Cursor

Video
Input

B
u
s

Network Display
List

Texture Memory

Z-Buffer

Fragment
Processor

Front

Back

MC Vertices

SC Vertices

Pixel Parameters

RGBAZ
Pixels

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates

Unified Memory 
Architecture (UMA) {

RGBA
Texels

TC

Shader
Memory

Varying variables

Varying variables

Attribute
variables

Uniform
variables

Transform gluLookAt Projection Viewport
NDCECWC

MC SC
Homogeneous

Division

CC

Uniform
variables

Video
Driver

CPU

Input
Devices

Double-buffered
Framebuffers

Rasterizer

Vertex
Processor

Cursor

Video
Input

B
u
s

Network Display
List

Texture Memory

Z-Buffer

Fragment
Processor

Front

Back

MC Vertices

SC Vertices

Pixel Parameters

RGBAZ
Pixels

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates

Unified Memory 
Architecture (UMA) {

RGBA
Texels

TC

Shader
Memory

Varying variables

Varying variables

Attribute
variables

Uniform
variables

Transform gluLookAt Projection Viewport
NDCECWC

MC SC
Homogeneous

Division

CC
Transform gluLookAt Projection Viewport

NDCECWC

MC SC
Homogeneous

Division

CC

Uniform
variables

Eurographics 2006/Werner Hansmann and Judy Brown (Eds) Education Paper 
 

Teaching OpenGL Shaders: 
Hands-on, Interactive, and Immediate Feedback 

 
Mike Bailey 

Oregon State University, USA, mjb@cs.oregonstate.edu 

 
Abstract 
This paper describes the teaching of OpenGL shaders with hands-on a program called glman.  
Hands-on education is at its best when the students’ experimental feedback loop is very fast.  glman 
allows students to create a shader scene description file which not only creates the 3D scene, but 
creates an interactive user interface to adjust parameters.  Our experience in an experimental class 
taught in Spring 2006 is that glman is flexible enough to demonstrate and experiment with many 
shader concepts, and creates a fast learning curve for the students. 
 
Categories: 1.3 [Computer Graphics], 1.3.1 [Graphics Processors], K.3.1 [Computer Uses in 
Education] 

 
 
1. INTRODUCTION 

 
GPU-programmable shaders are the most exciting 

development in computer graphics in a long time.  For 
the first time, programmers can get both the flexibility 
to perform amazing vertex-by-vertex and pixel-by-
pixel effects, combined with the performance to make 
it interactive.  The emergence of shader programming 
will have profound effects on all areas of computer 
graphics including science, engineering, art, animation, 
and gaming.  This is the good news.  The bad news is 
that shaders are difficult to learn and teach.  The effects 
of certain shader parameters in certain shader equations 
are not obvious.  Converging on good values is 
difficult. 

glman is a new program that was written to help 
teach the OpenGL Shading Language (GLSL) [FER04, 
PF05, ROS06].  It uses an input file called GLIB, (GL 
Interface Bytestream), 
which is modeled after the 
style of the RenderMan 
Interface Bytestream 
(RIB) [UPS90, AG99].  
glman reads a GLIB file as 
well as one or more vertex 
and fragment shader files.  
It then creates the 
requested scene, activates 
the requested shaders, and 
creates sliders for user-
defined global parameters.  
glman also provides a 
Perlin noise 
[PER85,PER02] 3D 
texture for use in the 
shader.  Our experience 
with using glman in a 
college class is that 
students get a maximum 
amount of quality learning 
in the minimum amount of 
time. 

 

2. SHADERS IN THE GRAPHICS PIPELINE 
 
Figure 1 shows a generic view of the computer 

graphics rendering process.  There are two locations in 
this process into which an application developer can 
inject custom shader code: the vertex processing and 
the fragment processing.  The Vertex Processor (VP) 
takes 3D coordinates in the modeling coordinate space.  
It transforms them into world coordinates using a 
modeling transform, then transforms them into eye-
space coordinates using a viewing transform.  It then 
performs clipping, projective transformation, and 
viewport mapping.  When coordinates leave the vertex 
processing stage, they have been changed into screen-
space coordinates, ready to be rasterized.  The reason 
that the VP is a great location to place custom code is 
that there is considerable information about the 
geometry available at that point, and the VP can do a 
variety of things with it. 

Figure 1: Generic Computer Graphics Process 
 
The second location is the Fragment Processor (FP).  

Because the output of the rasterizer is already an 
interpolated red, green, blue color, students are greatly 



   

confused about the function of the FP.  The inputs to 
the FP are every piece of information that is currently 
available about this pixel.  The most important pieces 
of information include the pixel’s previously-assigned 
red, green, and blue color; its alpha (transparency) 
value; its texture coordinates; plus any information 
passed from the Vertex Processor and interpolated in 
the rasterizer such as the pixel’s x, y, and z location 
and its surface normal.  The FP also has access to any 
global information passed by the application program 
such as light positions.  The Fragment Processor’s job 
is to take all this information and produce the final red, 
green, blue, and alpha for that pixel.  It also has the 
option to completely discard this pixel.  The reason that 
the FP is a great place to write custom code is that the 
appearance of that pixel can be computed based on 
whatever mathematics, optics, physics, or whimsy one 
wants to program. 
 
 
3. THE COURSE 

 
This course, CS 519, is a multidisciplinary course, 

with students from Computer Science, Engineering, 
and Geosciences.  The course teaches the theory 
behind how shaders work, enough graphics software 
and hardware to understand what is happening behind-
the-scenes, the mathematics of shader effects, and 
shows their use in a variety of applications.  

The assignments consist of several shader-creation 
projects which solidify the students’ understanding of 
various shader programming and mathematics 
concepts.  The class culminates in a Final Project, the 
Shader Olympics, in which each student chooses their 
own area of interest and develops a shader-based 
application in that area. 

The class lectures are in a hands-on lab.  Thus, it 
was important to be able to provide some sort of 
environment where the students could run instructor-
provided examples, discover the effects of certain key 
parameters, and then quickly change the examples to 
perform new tasks. 
 
4. WHAT DO SHADERS LOOK LIKE? 

 
The following code shows a vertex shader example, 

one of the first given to the students.  This vertex 
shader computes diffuse light source shading based on 
the transformed surface normal.  It sets up variables 
Color, X, and LightIntensity to be interpolated by the 
rasterizer into each instance of the fragment shader.  It 
also multiplies this model-space coordinate by the full 
Model-View-Projection matrix and passes into the rest 
of the pipeline. 
 
varying float LightIntensity;  
varying vec4 Color; 
varying float X; 
 
void 
main( void ) 
{ 
    vec3 tnorm = normalize( gl_NormalMatrix * gl_Normal 
); 
    vec3 LightPos = vec3( 0., 5., 10. ); 
    vec3 ECposition = vec3( gl_ModelViewMatrix * 
gl_Vertex ); 
    LightIntensity  = dot( normalize(LightPos - 
ECposition), tnorm ); 
    LightIntensity = abs( LightIntensity ); 

    Color = gl_Color; 
    X = gl_Vertex.x; 
    gl_Position = gl_ModelViewProjectionMatrix * 
gl_Vertex; 
} 
 

The following shows the corresponding fragment 
shader code.  Uniform variables are passed in by the 
application.  The fragment shader then uses the varying 
and uniform variables to decide if this fragment is in a 
stripe or not.  It uses two instances of the GLSL-
provided smoothstep function to create a “smooth 
pulse” so that the edges of the stripe are blended rather 
than being blatantly aliased.  It then passes this 
procedurally-determined color into the rest of the 
pipeline. 
 
 
varying float X; 
varying vec4 Color; 
varying float LightIntensity;  
uniform float A, P, Tol; 
 
void 
main( void ) 
{ 
    vec4 WHITE = vec4( 1., 1., 1., 1. ); 
    float f = fract( A*X ); 
  
    float t = smoothstep( 0.5-P-Tol, 0.5-P+Tol, f )  - 

smoothstep( 0.5+P-Tol, 0.5+P+Tol, f ); 
    gl_FragColor = mix( WHITE, Color, t ); 
    gl_FragColor.rgb *= LightIntensity; 
} 
 
Figure 2 shows what this shader combination produced 
when displaying a particular scene.  
 

 
Figure 2:  Procedural Stripes Computed in 

Model Coordinates 
 
5. INTRODUCING SHADERS TO STUDENTS 
 

But, our experience is that 
students learn shaders very 
slowly if they must go through 
the full edit-compile-execute 
sequence for every little 
feature they want to try.  We 
believe that learning shaders 
works best when the students 
are in a very tight try-it-myself 
loop.  With that in mind, we 
created a program called 
glman. The glman user 
interface is shown in here. 

glman is so named because 
its input looks a lot like the 
RIB files of RenderMan.  As 
such, its input files are called GLIB files, for GL 
Interface Bytestream.  The .glib file that produced 
Figure 2 is shown here: 

Perspective 90 
Translate -5 0 0 



   

Vertex stripesMC.vert 
Fragment stripesMC.frag 
Program StripesMC A <0 1. 10>  P <0. .25 1.>  \ 

Tol <0. 0. .5> 
Color [1 0 0] 
Sphere 1 
Color [1 1 0] 
Translate 1.5 0 0 
Cone 0.5 1. 
Color [0 1 0] 
Translate 2 0 0 
Torus .2 1. 
Color [1 0.5 0] 
Translate 4 0 0 
Teapot 

 
The lines: 
  Vertex stripesMC.vert 
  Fragment stripesMC.frag 
  Program StripesMC A <0 1. 10>  P <0. .25 1.>  \ 

Tol <0. 0. .5> 
 
are the most interesting.  The 
first line causes the file 
stripesMC.vert to be read 
and compiled as a vertex 
shader.  The second line 
does the same for the 
fragment shader file 
stripesMC.frag.  The third 
line links the current vertex 
and fragment shaders into a 
single shader program, 
which will then be applied to 
subsequent geometry.  That line also creates three 
uniform global variables A, P, and Tol, and puts them 
on sliders for the student to change interactively, as 
shown here.  The values in the angle brackets are the 
minimum value on the slider, the initial value, and the 
maximum value.  Uniform variables that represent 
colors are enclosed 
in curly brackets. 
They are {red 
green blue [alpha]} 
and will generate a 
button in the UI 
that, when clicked, 
brings up a color 
selector as shown 
here.  The color selector allows the user to change this 
color variable on-the-fly. 
 

Multiple vertex-fragment-program combinations 
are allowed in the same GLIB file.  If there is more 
than one combination, they will appear as separate 
rollout panels in the user interface 

In this way, glman allows a student to create a scene, 
a vertex shader, and a fragment shader, and 
interactively test the effects of many different 
parameter combinations in minutes, rather than hours. 
 
6. TEACHING NOISE AS AN INTEGRAL PART OF 
SHADERS 

 
Noise is a major component of shader-writing.  

Originally developed by Ken Perlin [PER85, PER02], 
noise is used as a variation on surface properties to 
make the surfaces more interesting.  But, noise is a 
difficult concept to explain to students.  So, we have 
written another program, NoiseGraph, to give the 

students hands-on experience with creating and 
controlling noise functions. 

The following figures show three scenarios from 
NoiseGraph.  The first figure shows positional noise, 
that is, random values are chosen at integer intervals 
and a smooth function is fit through them. 

 

   
Figure 3:  (a) Positional Noise, (b) Gradient Noise 

 
Figure 3a shows why positional noise is not used in 

shaders.  Based on random chance, there is a good 
probability that the values at the integer positions will 
not be very evenly distributed.  Figure 3b shows 
gradient noise, in which the integer points are forced to 
have values midway through the range with the slopes 
at those points chosen at random.  As can be seen, the 
distribution is much more uniform, without being “too 
uniform”. 

The noise function is made more interesting by using 
it to create fractional Brownian motion (fBm), or 1/f 
behavior.  In this method, multiple noise functions are 
summed.  Each successive noise function is twice the 
frequency and half the amplitude of the previous one.  
This makes the noise more interesting.  The low 
frequency functions give it definition, and the high 
frequency functions give it character.  The students can 
interactively experiment with this too, to experience 
the effects of the different noise parameters for 
themselves. Figure 4 shows four octaves of 1/f noise. 
 

 
Figure 4:  Four octaves of 1/f noise 

 
Figure 5 shows an interesting noise example from 

class: the teapot with a rainbow shader.  The rainbow 
shader uses the Model Coordinate position of each 
fragment to assign the colors.  In the middle image, a 
pulse function is used to transition between the colors.  
The width of the smooth step is controlled by a slider.  
In the third image, a noise function is added to the 
coordinate position.  The magnitude of the noise is also 
controlled by a slider. 



   

 
 

  
Figure 5:  Rainbow stripe shader with noise 

This is a very simple example, but it readily explains 
to students changing display parameters based on 
coordinate position, the smoothstep function, and 
noise.  It also lets them quickly try it themselves with 
their own functional parameters, instead of just being 
shown 
 
7. ASSIGNMENTS AND EXAMPLES 

 
The following show some of the assignments used 

in the class: 
 

   
Figure 6: Dots, based on texture space coordinates in 

the fragment shader 
Figure 7: Surface displacement in the vertex shader 

and gridline assignment in the fragment shader 
 

   
Figure 8: Noise-based erosion shader, using texture-

space coordinates in the fragment shader 
Figure 9: Interactive Line Integral Convolution using 

texture manipulation in the fragment shader 
 

   
Figure 10: Flow visualization object extrusion 

in the vertex shader 
Figure 11: Terrain visualization bump-in the fragment 

shader 
 

 
Figure 12: Volume visualization in the fragment 

shader 
 

 
8. CONCLUSIONS 

 
The combination of glman and NoiseGraph has been 

used in our college class to teach GLSL shaders.  We 
have found them to be excellent tools to explain how 
certain shader parameters work and to let students 
quickly explore on their own.  Because students don’t 
need to write full programs, and because glman creates 
a user interface from user directives, it is fast and easy 
to get started, and encourages individual exploration.  
Because the uniform variables can so readily be 
manipulated, it is easy to create sophisticated shaders 
and determine what variables should be used and how 
they should be set. 

 
The class syllabus is located at: 
 
http://eecs.oregonstate.edu/~mjb/cs519 

 
The glman and NoiseGraph programs and 

documentation can be obtained at: 
 

http://eecs.oregonstate.edu/~mjb/glman 
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