
HWU Ch12-9780123849885 2010/9/25 14:22 Page 167 #1

CHAPTER

12Massive Parallel Computing to
Accelerate Genome-Matching

Ben Weissa, Mike Baileyb

aUndergraduate, Oregon State University
bProfessor of Computer Science, Oregon State University

INTRODUCTION
This chapter explores the process of defining and optimizing a relatively simple matching algorithm in
CUDA. The project was designed to be a tool to explore the process of developing algorithms from start
to finish with CUDA in mind; it also intended to highlight some of the differences between development
in a massively parallel GPU-based architecture and a more traditional CPU-based single- or multi-
threaded one. Framed in the context of a real-world genetic sequence alignment problem, we explored
and quantified the effect of various attempts to speed up this code, ultimately achieving more than two
orders of magnitude improvement over our original CUDA implementation and over three orders of
magnitude improvement over our original CPU version.

12.1 INTRODUCTION, PROBLEM STATEMENT AND CONTEXT
Because exploration and learning were the primary goals, we chose to explore the development of a
solution to a well-understood computational genetics problem that seeks to align short sequences of
genetic material against a larger fully sequenced genome or chromosome. This choice originated with
a desire to support Michael Freitag’s (Oregon State University) genetics research. This provided a real-
world customer with real datasets and requirements. However, in the broader aspect, the lessons learned
throughout the development of this code will act as a guide to anyone trying to write any high-efficiency
comparison algorithms on CUDA, beyond computational genetics. Our hope is that the lessons we
learned can save others time and effort in understanding at least one way of using and optimizing for
the CUDA platform. We attempt to present the give and take between optimizing the algorithm and
tweaking the problem statement itself to better suit the CUDA platform; several of our most significant
improvements came as we rephrased the problem to more accurately suit CUDA’s abilities within the
context of our customers’ needs.

As sequencing machines produce larger and larger datasets, the computational requirements of
aligning the reads into a reference genome have become increasingly great (Trapnell 2009). Modern AQ:1
sequencing machines can produce batches of millions of short (<100 base pair) reads, here referred to
as “targets” for clarity, which need to be aligned against a known reference genome. Several CPU-based

GPU Computing Gems. DOI: 10.1016/B978-0-12-384988-5.00012-7
Copyright c© 2011, Elsevier Inc. All rights reserved. 167

weissb
Cross-Out

weissb
Inserted Text
[8]



HWU Ch12-9780123849885 2010/9/25 14:22 Page 168 #2

168 CHAPTER 12 Massive Parallel Computing to Accelerate Genome-Matching

For every short target sequence:
For every genome base−pair:

Compare the target to the genome subsequence starting at this
base pair

Record any matches
Next genome base pair

Next target

Listing 12.1: Basic Problem Pseudocode.

Genome (Millions of base pairs)

T C G G C T

Millions of target reads (Dozens of base pairs each)

T A

A

G

G

G

G

C

C

A

A

G

G

T

T

T

T

C

C

G

G

A

A

T

T

A

A

A

A

G

G
Find

Matches

Find

Matches
T

FIGURE 12.1

Illustration of the basic problem being solved. A large genome is searched for matches to a long list of target
reads.

solutions have been developed to address this issue, a few of which have been ported to CUDA, but
we chose instead to present a method developed with CUDA in mind from the very beginning. A small
snippet of pseudocode (Listing 12.1) and an illustrative graphic (Figure 12.1) provide a naive solution
that clarifies the fundamental problem that we have solved.

This problem appeared to be a good match for implementation in CUDA because the code is
highly parallelizable and fits well into an SIMT paradigm. Additionally, the cost-effectiveness of usingAQ:2
NVIDIA hardware to solve this problem made a CUDA solution appealing: a traditional cluster could
have cost 10 times what an equivalent desktop GPU solution might cost. Hashing the genome and target
sequences, one of the standard techniques for solving a problem like this, was implemented very late
in the development of our solution in part because it complicates the algorithm’s data access patterns
significantly and makes it more difficult to optimize.

For the development phase of our specific algorithm, a benchmark set of 5000 real-world 36 base
pair (BP) targets (reads) was replicated many times and matched against an already-sequenced map of
linkage group VII of Neurospora crassa (3.9 million BP). This was used as a baseline to gauge the
performance of the algorithm, which had to run on inexpensive hardware and scale to problems with
millions or even billions of reads and tens of millions of genome base pairs.

12.2 CORE METHODS
The algorithm presented here, which currently reports only exact matches of the target reads onto the
references genome, differs significantly in structure from many previously available codes because

weissb
Sticky Note
This line should be un-broken; *base pair* does not need to be indented.

To be:
"		Compare the target to the genome subsequence starting at this base pair"

weissb
Inserted Text
Single Instruction, Multiple Data (SIMT)

weissb
Cross-Out



HWU Ch12-9780123849885 2010/9/25 14:22 Page 169 #3

12.2 Core Methods 169

instead of seeking to port a CPU-centric algorithm to the GPU, we built the solution entirely with AQ:3
CUDA 1.1 in mind. In this section, we present a brief overview of our comparison kernel.

The first few steps of each kernel involved rearranging memory on the GPU. Though somewhat
mundane, these tasks received a great deal of time in the optimization process because the various
memory access pathways and caches available in CUDA are strikingly different than the cache layers
of a CPU. First, a section of genome was loaded from global memory into shared memory; this section
of genome persisted throughout the comparison operation. The load operation was designed to create a
series of coalesced memory transfers that maximized speed, and each block takes a different section of
the genome.

Next, each thread loaded a target into a different section of shared memory. In each kernel, all
blocks checked the same series of several thousand targets, so targets were stored in constant memory
to take advantage of on-chip caching. Once loaded, each thread checked its target against portions of AQ:4
the genome in each target’s block block’s portion of the genome, recording matches in a global memory
array. After a target had been checked, a new one was loaded from constant memory to replace it, and
the comparison repeated until all designated targets had been handled. In successive kernel calls, the
constant memory was reloaded with new targets.

A simple example clarifies the process. Suppose we have a short section of genome and a list of
four targets that we match using a kernel with two blocks and three threads per block (see Figure 12.2).
First, each block loads a section of genome into shared memory; then each thread grabs a target and
compares it against the cached portion of the genome. Most threads do not find matches, but thread 3 in
block 1 does, and records the target identifier and genome offset in global memory. When the first three
targets have been handled, the next three are loaded and checked. All matches are recorded. The process
continues until all targets for the run have been handled. Of course, CUDA does this with dozens of
threads in hundreds of blocks at a time.

Late in the development of the algorithm, a hash table was implemented, sorting each genome offset
and target based on the first eight BPs. This, vaguely similar to Maq’s seed index table (Trapnell 2009, AQ:5
Li 2008), allows the algorithm to consider only genome/target matches where the first few base pairs
already match, increasing the probability by several orders of magnitude that a comparison will suc-
ceed. Most commercial CPU-based alignment algorithms use a hash table of some form. No advantage

Thread 2
Thread 3

Thread 1
Block 1

Results List

Genome

A A C G

C T T A

T A G G

G C G A

T
ar

ge
ts

1

2

3

4

1
2
3

Thread 2
Thread 3

Thread 1
Block i

1
2
3

A A C T T T G A A A G T T GT C G T A G G C A G T T C G

FIGURE 12.2

Example of a kernel of three treads doing a comparison.

weissb
Sticky Note
These revisions are acceptable.

weissb
Inserted Text
the 

weissb
Cross-Out

weissb
Inserted Text
stored locally 

weissb
Cross-Out

weissb
Replacement Text
shared memory

weissb
Sticky Note
As stands, this does not convey what we desired. Let's revise the sentance to say:
"Once loaded, each thread checked its targets against the portions of the genome stored locally in each block's shared memory, recording matches in a global memory array."

weissb
Cross-Out

weissb
Replacement Text
[7], [2]



HWU Ch12-9780123849885 2010/9/25 14:22 Page 170 #4

170 CHAPTER 12 Massive Parallel Computing to Accelerate Genome-Matching

was gained by computing target reverse-complements on the fly, so when enabled, complements are
precomputed on the CPU and added to the target list.

In addition to the CUDA kernel, a multithreaded CPU version was built with a similar formulation,
though organized and optimized somewhat differently to cater to the differences between the archi-
tectures, especially in the way that memory is allocated and arranged. Details of these differences are
discussed later in this chapter. Running both CPU and CUDA versions of the comparison in parallel
provided still greater speed, but also presented additional challenges.

In the following sections, we will explore some of the specific changes made, but major lessons
learned are summarized here. As expected, multiprocessor occupancy was found to be important,
though on more recent hardware this parameter is easier to keep high because of increases in the number
of available registers in each multiprocessor. Additionally, optimizing and utilizing the various memory
pathways are critical for this kind of high-throughput code. In order to maximize these indicators of
performance, both algorithm design and kernel parameter settings must be carefully selected. Also as
expected, wrap cohesion was found to be important, but if the basic kernel flow is cohesive, the NVCC
compiler handles this without much need for programmer involvement.

With its complex memory pathways and computation architecture, CUDA is fundamentally differ-
ent than the CPU for performance applications, and one should approach CUDA carefully, with the
understanding that some conventional wisdom from single-threaded programming does not work in an
SIMT environment.

12.3 ALGORITHMS, IMPLEMENTATIONS, AND EVALUATIONS
A main goal of the project was to determine the characteristics of CUDA algorithms that have the
greatest influence on execution speed. Thus, our improvements in performance were measured against
previous versions of the same code, not the results of other researchers’ solutions, to allow for quan-
tification of the effectiveness of algorithmic changes in increasing efficiency. Most industry-standard
codes for this kind of problem support mismatches between target reads and a reference genome, as
well as gaps of a few BPs.

Our development occurred on a Pentium 4 3.0 GHz dual-core system with 2 GB of RAM running
a single 256 MB GeForce 8600 graphics card, Windows XP Professional, and CUDA 1.1. All perfor-
mance statistics reported here were based on this system, but we expect that they would scale very well
to the newer, faster generations of NVIDIA hardware available.

Throughout the development of the code, the speed improvements and their associated algorithmic
changes were carefully tracked to give us an idea of the effectiveness of various strategies in speeding
up CUDA code (see Figure 12.3). “Targets per second” is representative of the number of targets
processed per second during the comparison stage of the algorithm; setup and post-processing time
were assumed to be small compared with the computation time for real-world problems, and this metric
provided a more direct measure of the performance of the algorithm, rather than the system, making
performance improvements in CUDA easier to distinguish.

Some changes involved optimizations to the code itself while retaining the overall structure of
the algorithm; others pertained to changes in the way the problem was solved or (in a few cases) a
modification of the problem statement itself. This seems typical of any project developed in CUDA
and shows the interplay between the hardware’s capabilities and the software’s requirements as they



HWU Ch12-9780123849885 2010/9/25 14:22 Page 171 #5

12.3 Algorithms, Implementations, and Evaluations 171

Genome search algorithm speed during development
Execution speed (targets per second*)

2000

1800

1600

1400

1200

1000

800

600

400

200

0
11.5

Encoding

CPU
CPU

Run parameter
optimization

Integer target headers

On-the-fly target shifting

Combined CPU+CUDA

Run parameter
optimization

CUDA Kernel 1:28,000 targets/sec
CPU:32,000 targets/sec

Combined CPU+CUDA:54,000 targets/sec

Binning:

Bank conflicts
reduced

Targets in constant cache

Register count
reduced

CUDA Kernel 0

CUDA Kernel 1

Progress → (Not to scale)
*Targets per second denotes the number of 36 base-pair “target” sequences searched for exact matches in a 3.9 million base-pair genome per second. All data collected
on an NVIDIA GeForce 8600 card, Pentium 4 dual core processor with 2 GB ram.CUDA 1.1. Ben Weiss /Oregon State Graphics / 6.6.2010

FIGURE 12.3

Genome search algorithm speed during development, for two different versions of the CUDA kernel and the
optimized CPU version of the same algorithm. Points represent significant changes made to the code.

relate to overall speed. In the following sections, we describe some of the most interesting and effective
optimizations that we employed.

12.3.1 Genome Encoding
Obviously, reading genetic data in 8-bit ASCII character format is a significant waste of space. Encod-
ing the A’s, C’s, T’s and G’s into a more compact form provided a significant speedup: With each base
pair requiring only two bits, four could be packed into each byte and compared at once. Though easily
implemented, an algorithmic problem presented itself: The bytes of genome and target data lined up
only one-quarter of the time. To resolve this we created four “subtargets” for every target sequence
(read), each with a different sub-byte offset, and introduced a bitwise mask to filter out the unused
BPs in any comparison. All told, this change (which occurred while still investigating the problem
on the CPU before initial implementation in CUDA) improved performance only by about 10%, but



HWU Ch12-9780123849885 2010/9/25 14:22 Page 172 #6

172 CHAPTER 12 Massive Parallel Computing to Accelerate Genome-Matching

significantly reduced memory usage and paved the way for more effective changes. Although search
algorithms in other disciplines may not have such an obvious encoding scheme, this result still indicates
that for high-throughput applications like this, packing the relevant data even though it consumes a bit
more GPU horsepower can provide a significant speedup. Figure 12.4 demonstrates the compression
and masking process.

12.3.2 Target Headers
Another inherent inefficiency was addressed: The code runs on a 32-bit multiprocessor, but all com-
parisons were single-byte operations. Very significant speed gains were made by encoding the genome
into char arrays and then typecasting them to integers to more fully utilize the pipeline width. In this
revision, “headers” were created for each subtarget, containing 4-byte (16-BP) integer versions of the
target itself and the accompanying mask, and then the appropriate section of genome was typecast to
int and compared with the header. Used as a pre-filter for the remainder of the comparison process,
this reduced the likelihood of a target passing the header check but not being an actual match to about
one in 50 million compares on our test dataset. The result was a speed increase of more than 25% in
CPU mode, slightly less under CUDA, which complicates typecasting of char to int because of its
shared memory layout. Figure 12.5 illustrates a 2-byte target header in action.

Our CUDA kernel stores the genome in shared memory. Shared memory is arranged in 16 banks,
each 32 bits wide [5]. Presumably because of this unique layout, the NVCC compiler behaves in an
unusual way when typecasting from char arrays to int. When an address for an int lies on an even
multiple of four bytes, the typecast proceeds as expected. However, when the address is not aligned this

0 1 1 1 11 1 1
T A G G

A G GT

T A G G

T A G G C CA G

C A G T
G C A GC T A G

G C A GT A G

FIGURE 12.4

A switchAQ:6 from a single BP compares with encoded BPs comparing whole bytes at a time. When the genome
and target don’t align at byte boundaries, a mask filters out the unused base pairs.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C T A G G C A G

T A G G C A G

CT T G G C A G

CT T G G C A G

FIGURE 12.5

A target header in action. If the 16-bit (8 BP) header comparison succeeds, then the compare operation
proceeds.

weissb
Cross-Out

weissb
Cross-Out

weissb
Replacement Text
to

weissb
Sticky Note
Let's revise the caption as shown. I don't want to muddy the contrast between single-BP comparisons and an encoded BP comparison.



HWU Ch12-9780123849885 2010/9/25 14:22 Page 173 #7

12.3 Algorithms, Implementations, and Evaluations 173

way, the word returned is the next-lowest aligned int to the address requested. For example, given an
array char q[8] that spans two banks: 0xAABBCCDD is stored in Bank 1 and 0xEEFF1122 in Bank 2,
we try the typecast *(int*)(q + 2), which we expect to return 0x1122AABB. We instead obtain
0xAABBCCDD – the contents of Bank 1. This makes some sense: The compiler requests memory from
one bank at a time to maximize speed, and this fringe case occurs very seldom in practice. However,
it extends to other typecasts as well – if a char array is typecast to shorts, only typecasts to even-
numbered bytes give the expected result. Compensating for this behavior requires bit fiddling two
bank-aligned integers into the desired portion of the encoded genome for comparison and reduces
performance gains significantly. Once we understood this, working with it was not a problem.

12.3.3 Data Layout
Even though CUDA is fundamentally a stream-processing engine, the best access patterns for this kind
of problem appeared more like a spider web: The many available memory pathways made moving data
around a complex task with easily overlooked subtleties. Table 12.1 provides an overview of where
the data structures needed by the algorithm were stored. Because the comparison mask was fixed, we
stored that information in constant memory, which was heavily cached, while the genome resided in
global memory and was copied into shared (local) memory for comparison. The entire target list is
kept in global memory, but because each kernel uses relatively few targets, a subset is copied to the
remaining constant memory for each kernel. Targets are then further cached in shared memory for each
compare operation. The texture memory pathway was initially unused, then later pressed into service
for loading target and genome hash information, which attempts to take advantage of its spatial locality
caching.

Table 12.1 Data storage locations.

Data Location Access pattern

Entire genome Global memory Subset cached to local memory once per
kernel in a cohesive transfer.

Entire target list Global memory Subset loaded to const memory before
each kernel.

Kernel target list Constant memory Targets loaded as needed from constant
memory.

Active genome section Shared memory Frequent random access throughout
kernel.

Active target list Shared memory Frequent sequential access throughout
kernel, reloaded many times from constant
memory.

Target masks Constant memory Very frequent access to a few dozen bytes
of information.

Hash offsets Texture memory Somewhat frequent access to clusters of
nearby entries.

Results table Global memory Written two by threads in different blocks
once per match (relatively rare).



HWU Ch12-9780123849885 2010/9/25 14:22 Page 174 #8

174 CHAPTER 12 Massive Parallel Computing to Accelerate Genome-Matching

The advantage of pulling from different memory sources is a smaller utilization of global memory
bandwidth, decreasing the load on one of the weakest links in data-intensive CUDA kernels like ours.
On the CPU, however, experiments indicated that the highest speed could be provided by actually
replicating the mask set many times and interleaving the target data so that target headers and their
associated masks are very close together. Placing the masks in their own array, even though it means
almost half as much data is streamed into and out of the CPU, actually slows performance down very
significantly (a 35% speed increase for the interleaved scheme).

CUDA’s shared memory is arranged in banks capable of serving only one 4-byte word every two
clock cycles [5]. Successive 32-bit ints of shared memory are stored in successive banks, so word 1 is
stored in bank 1, word 2 in bank 2, and so on. The importance of understanding this layout was driven
home in one design iteration that had the targets arranged in 16-byte-wide structures. Every iteration
all 32 threads read just the first word (the header) from the structure, which resided in only four banks
and created an eight-way “bank conflict” — it took 16 GPU clock cycles to retrieve all the data and
continue. To alleviate this problem, the target headers were segregated in their own block of shared
memory so that every bank was used on every read and presented at most a two-way bank conflict per
iteration. This change alone gave us a 35% speed increase.

Each CUDA multiprocessor on the GeForce 8600 graphics card that we used has only 8192 regis-
ters, although later architectures have more. This meant that the number of registers a given thread used
was very important (a block of 256 threads all wanting 24 registers requires 256× 24= 6114 registers,
so only one block would be able to execute at a time). A variety of efforts were made to reduce the
number of registers in use in the program, the most successful of which involved passing permutations
on kernel parameters as additional kernel parameters instead of using extra registers to compute them.
Generally, though, the NVCC compiler seemed to do a good job of optimizing for low register count
where possible, and almost nothing we tried successfully reduced the number further.

12.3.4 Target Processing
Because so little time is required to do a simple comparison operation, the algorithm was bottlenecked
in the global memory bus. A significant performance increase was obtained by creating the subtargets
(sub-byte shifts of targets to compensate for the encoding mechanism discussed earlier in this chapter)
on the fly on the GPU instead of pregenerating them on the CPU and then reading them in. On the CPU,
of course, the extra steps were a significant drain; not doing on-the-fly shifting increased performance
by roughly 30%. On CUDA, doing on-the-fly preprocessing increased performance by about 3% ini-
tially, with much more significant benefit later owing to the decreased memory bandwidth involved in
moving only one-quarter as much target data into local shared memory.

12.3.5 CUDA Kernel Parameter Settings
The single most significant change in the development of the CUDA version of the algorithm occurred
when the kernel parameters (threads per block, targets per kernel, and cache size per block) were first
optimized. To do this, a massive systematic search of the entire kernel parameter space was made,
seeking a global optimum operating point. The resulting optimum parameters are listed in Table 12.2.

Great care needs to be exercised when selecting these options for a number of reasons. First, there
are limited amounts of cache and registers available to each multiprocessor, so setting threads/block



HWU Ch12-9780123849885 2010/9/25 14:22 Page 175 #9

12.3 Algorithms, Implementations, and Evaluations 175

Table 12.2 Optimized kernel execution parameters.

Threads/block 64
Shared cache size 7950 bytes/block
Blocks/kernel 319

or cache size too large can result in processors having to idle because memory resources are taxed.
Additionally, the overhead required to get each block started incurred a penalty for blocks that do too
little work, so very small blocks are not advisable. Finally, if blocks ran too long, the OS watchdog
timer interfered with execution and manually yanked back control, crashing the kernel and providing
impetus to keep blocks/kernel relatively small. One aid we used in setting these parameters was the
CUDA Occupancy Calculator, which predicts the effects of execution parameters on GPU utilization
[4]. The advice of this calculator should be taken with a grain of salt, however, as it cannot know how
parameter changes affect the speed of the code itself within each block, but it provides a good indication
of how fully the device is being utilized.

12.3.6 Additional Smaller AQ:7Threads
Midway through the project, the CUDA kernel underwent a significant overhaul (the difference between
Kernel 0 and Kernel 1 in Figure 12.3). The biggest change came from a desire to reduce the workload of
each individual thread. Additional, smaller threads tend to perform better in CUDA, especially if each AQ:7
thread is linked to a proportionate amount of shared memory — the smaller the task, the less shared
memory it requires, and the more threads can run. In Kernel 1, targets and subtargets were cached in
shared memory, so having each thread do just one subtarget instead of an entire target resulted in a
very significant speedup in the long term. Eventually, however, genome hashing forced Kernel 1 to be
changed back to one target per thread because the genome locations for successive comparisons were
not consecutive.

12.3.7 Combined CUDA and CPU Execution
Using both CUDA and the CPU version of the algorithm seemed like a logical next step, and indeed,
doing this improved performance. Some issues became apparent, however, in the loop that waits for
CUDA to finish. Out of the box, CUDA is set up to “hot idle” the CPU until the kernel is done, keeping
CPU usage at 100% and prohibiting it from doing other tasks. To mitigate this, we used a different
approach that queried the device for kernel completion only once every 2–6 ms, using the rest of the
time to run comparisons with the CPU version of the algorithm. In this mode, both CPU and GPU see
a slight performance hit, but the combined totals still outweigh either individually in our development
dataset.

12.3.8 Gaps and Mismatches
Commercial implementations of the short read genome matching problem allow a set number of mis-
matches between the target and the genome match location, as well as “gaps” — regions of code

weissb
Sticky Note
That was our intention. Your revision is acceptable.



HWU Ch12-9780123849885 2010/9/25 14:22 Page 176 #10

176 CHAPTER 12 Massive Parallel Computing to Accelerate Genome-Matching

T A G G C A G T T C G T A A G C

T A C G C A G T T C G A T A A G

FIGURE 12.6

Example of a compare operation containing a gap and a mismatch.

inserted in either the genome or the target before the match continues (see Figure 12.6). A little binary
trickery [1] allowed mismatches to be implemented beyond the 16 BP header region with only a
slight performance hit. However, to find mismatches in the target header with hashing enabled, all
targets would need to be requeried using a header and hash key from a different part of the target (see
Figure 12.6). This would require all targets to be compared twice to find a mismatch, once for each
header, and would reduce performance by more than 50%. This feature has not yet been fully imple-
mented, and so is not reported in any other results, but the fundamental challenges have been overcome.
The current code also does not yet support gaps, but once multiple headers for mismatches are in place,
it simply makes the comparison operation more complex, reducing performance by an unpleasant, but
tolerable, measure.

12.3.9 Genome/Target Hashing
The greatest single performance improvement throughout the development of the algorithm came when
the genome was hashed into bins, with each bin containing a list of offsets where the sequence matches
the same first eight base pairs. This approach is taken by the majority of commercial solutions to this
problem, and for good reason. Once targets were similarly binned, only compare operations in the same
bin needed to be executed, reducing the total number of comparison operations 216-fold. Information
about the genome offsets for each bin was given to the kernel in a texture, utilizing the GPU’s cache
locality to try to ensure that the next offset needed was readily available in cache. Even just a crude first-
round implementation of this feature increased performance by nearly 10x, though the hashing process
(which is actually quite quick) was treated as a preprocess, and thus is not included in the performance
metrics in Figure 12.3.

12.3.10 Scaling Performance
In order to gauge how well this solution scales to larger problems, we tested the algorithm against two
real-world datasets that push our GeForce 8600’s memory resources to their limit. In each case, wild
cards (“N”s) within the genome were ignored, and targets were required to contain no wild cards. The
first dataset uses our development test genome (used to create Figure 12.3), Linkage Group VII from
the sequenced Neurospora crassa genome, and searches a target list of slightly more than 3.4 million
36 base-pair segments. The second dataset consists of the first 5.0 million base pairs of chromosome
1 of N. crassa and a list of 1.0 million 76 base-pair targets. Table 12.3 shows the compare times with
the most recent version of the algorithm running in CUDA-only mode as well as both CUDA and
CPU combined. For reference, one run of the first dataset was limited to only 1.0 million base pairs
as well.



HWU Ch12-9780123849885 2010/9/25 14:22 Page 177 #11

12.5 Future Directions 177

Table 12.3 Large dataset performance results.

Dataset
Genome

BP
Target
Count

Target
Length

(BP)

Compare
Time

(CUDA)

Targets/
Second
(CUDA)

Compare
Time
(Both)

Targets/
Second
(Both)

1∗ 3,938,688 1,000,000 36 24.7 s 40,400 9.7 s 103,000
1∗ 3,938,688 3,419,999 76 48.2 s 70,900 22.3 s 153,000
2+ 5,000,000 1,000,000 76 62.2 s 16,100 38.8 s 25,800

∗Linkage group VII of Neurospora crassa. +First 5 MBP of chromosome 1 of Neurospora crassa.

These numbers appear significantly higher than the numbers reported in Figure 12.3 because of the
comparatively few exact matches present in these datasets, which reduces the number of expensive
writes to global memory. This is to be expected for this application.

12.4 FINAL EVALUATION AND VALIDATION OF RESULTS,
TOTAL BENEFITS, LIMITATIONS

Our application provided an excellent platform to explore the tuning characteristics of this relatively
new computing platform. Much was learned about memory access and kernel execution parameters,
which are sensitive aspects of CUDA programs that differ significantly from traditional CPU design
problems, but both can have a large impact on performance.

Even after over a year of development, we believe that the algorithm is still far from optimized and
that more performance gains can still be expected. Limitations in the handling of gaps and mismatches
and in the size of datasets can be overcome with additional development. Additionally, the handling of
wild card “N” base pairs in the genome is implemented, but requires further validation. Handling of
wild cards in targets is theoretically possible, but was omitted to simplify the algorithm and because it
was not one of our customer’s requirements.

Ultimately, this project serves as an example to other CUDA developers solving similar search-and-
match problems. It seeks to provide ideas of ways to optimize such codes, as well as information about
the relative effectiveness of these techniques in this specific case.

12.5 FUTURE DIRECTIONS
Then next steps for this algorithm are fairly obvious. Final verification and benchmarking of mis-
matches and support for gaps and larger datasets are the immediate next steps. Farther down the road,
implementing gaps and benchmarking against industry-standard solutions to this problem present them-
selves as important future objectives. As new generations of CUDA hardware and the NVCC compiler
are released, the optimizations presented here must be tweaked and updated, adjusting to new intricacies
on new hardware.



HWU Ch12-9780123849885 2010/9/25 14:22 Page 178 #12

178 CHAPTER 12 Massive Parallel Computing to Accelerate Genome-Matching

References
[1] S.E. Anderson, Bit Twiddling Hacks, Stanford University, available online at http://www.graphics.

stanford.edu/∼seander/bithacks.html.
[2] H. Li, J. Ruan, R. Durbin, Mapping Short DNA Sequencing Reads and Calling Variants Using Mapping

Quality Scores, Genome Res. 18 (2008) 1851−1858.
[3] Y. Liu, D.L. Maskell, B. Schmidt, CUDASW++: optimizing Smith-Waterman sequence database searches

for CUDA-enabled graphics processing units, BMC Research Notes 2 (1) (2009) 73. Available online at
http://www.biomedcentral.com/1756-0500/2/73/citation.

[4] CUDA Occupancy Calculator, NVIDIA (2008), available online at http://developer.download
.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls.

[5] NVIDIA CUDA Compute Unified Device Architecture Programmers Guide, NVIDIA Corp. (1.1) (2009)
56–61, available online at http://developer.download.nvidia.com/compute/cuda/1 1/NVIDIA
CUDA Programming Guide 1.1.pdf.

[6] T.F. Smith, M.S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology
147 (1) (1981) 195−197.

[7] C. Trapnell, S. Salzberg, How to Map Billions of Short Reads onto Genomes, Nature Biotechnology 27 (5)
(2009) 455−457.

[8] C. Trapnell, M.C. Schatz, Optimizing data intensive GPGPU computations for DNA sequence alignment,
Parallel Computing 35 (8, 9) (2009) 429−440.



HWU Ch12-9780123849885 2010/9/25 14:22 Page 179 #13

Author queries:

AQ:1 Please list the correct number of the reference inside the brackets. The list of references at the
end of the chapter have been numbered.

AQ:2 Should SIMT be defined here? How familiar will the readers be with this acronym?
AQ:3 Are my revision to this sentence OK?
AQ:4 This sentence is confusing. I edited it, but please make sure that you agree with my revisions.

I wasn’t sure if you meant that each target has a block with part of the genome in it, or if you
meant something else.

AQ:5 Please insert the numbers of these references within the brackets.
AQ:6 Are my revisions to the caption for Figure 12.4 OK?
AQ:7 Did you mean additional smaller threads here? Is my revision OK?




