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Abstract 
 

The word “chaotic system” [Peitgen92] 
describes a system whose outputs are very 
sensitive to its initial conditions.  Because of their 
inherent complex nature, chaotic systems are 
difficult to visualize and understand.  This paper 
describes the visualization of a mechanical chaotic 
system – a magnetic pendulum.  The program uses 
dynamics modeling and imaging, so that a user 
can experiment with different configurations and 
then visualize how that configuration responds to 
all input conditions.  The result shows interesting 
patterns and insights into the mechanical system 
itself.  This same technique would be applicable to 
visualizing many other chaotic systems. 
 
Introduction 
 

“The greatest problem that computers are 
confronted with when dealing with chaos 
is the extreme sensitivity of an iterator.” 
[Peitgen92] 

 
This photo shows a common device seen in 

science museums and on executive desks.  It 
consists of a pendulum with a magnetic bob and 
(in this case) three magnets on the base.  The user 
experiments with this by setting the pendulum in 
motion.  Once swinging, it is immediately obvious 
just how interesting and complex this motion is.  
The bob alternately is attracted and then released 

by all three 
magnets.  
Eventually 
damping takes 
over and the 
pendulum settles 
down to being 
attached to a 
single magnet.  It 
is also 
immediately 
obvious that this 
is chaotic motion.  
Because the 
motion is so 
complex, the final resting position of the 
pendulum is very sensitive to the initial conditions 
given by the user.  We became interested in the 
nature of the motion and in determining and 
visualizing just how chaotic the motion is. 

 
 
The Simulation  
 

The following figure shows a diagram of the 
mechanical system.  It has two degrees of 
freedom, Φ and Θ.  Φ is how much the pendulum 
has swung away from the vertical.  This is the 
angle that would be used to analyze a simple one-
degree-of-freedom pendulum.  The angle Θ is how 
much the pendulum revolves around in a 
horizontal plane. 
 



 
P is the position of the pendulum at the current 

time.  L is the length of the pendulum from the 
pivot point to the bob.  The Pi are the positions of 
the magnets and the Fi are the strengths of the 
magnets.  The total torque on the pendulum is a 
combination of the magnet forces and gravity 
acting on the bob as follows: 
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The resulting torque is a vector quantity because 

it has x, y, and z components.  It is composed of 
two components, a Φ component that is 
perpendicular to the swinging motion and a Θ 
component that is perpendicular to the revolving 
motion.  These two torque components drive the 
system, giving acceleration equations of: 
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The Ci constants are each component’s damping 

coefficients.  There is some amount of air-
resistance damping, but most of the damping is 
due to friction in the pivot point.  These 
coefficients were obtained empirically, and are 
what cause the motion to eventually die out.  The 

denominators are the moments of inertia for the 
two motions.  The moments of inertia are different 
because the Φ motion uses the entire L while the Θ 
motion uses just the horizontal component of L. 

 
The simulation used a second order Runge-Kutta 

scheme.  This was a good compromise between 
accuracy and speed. 
  
 
The Graphics Program 
 

The graphics program was written using the 
OpenGL graphics API [Shreiner04] and the GL 
Utility Toolkit (GLUT) [GLUT05] window 
interface.  The program presents three windows to 
the user: a 3D window showing the whole scene, a 
2D window showing just the overhead view, and 
an image window showing the chaos pattern.  The 
user can grab and move any of the magnets in the 
2D window.  The user can also use that same 
window to grab the pendulum bob, raise it to any 
position, and let it go.  It then goes through its 
equations of motion, leaving a trail in both the 3D 
and 2D windows as shown below:  
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Results and Experimentation 
 

For the magnet configuration shown above, the 
following three figures show the chaos pattern, 
progressively zoomed in.  In this imaging pattern, 
each pixel represents the starting location for the 
pendulum bob, projected on the horizontal plane.  
It is in the same coordinate system as the 2D scene 
view shown above. The color at each pixel 
represents at which magnet the bob ultimately 
comes to rest. 
 

   
 

 
 

 
 

 
 

The patterns are fascinating.  In the inner 
regions, there are several “balloons”, “arcs”, and 
“arrows”.  The above images show zoomed-in 
areas.  Like other chaotic patterns, such as the 
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Mandelbrot set [Mandelbrot83], the zooming can 
go on forever.   However, there do not appear to be 
any recurring multiresolution patterns like the 
“Mandelbrot ladybug”. 
 

It is also interesting to see how long it takes the 
simulation to come to rest.  The following image 
uses the same magnet configuration as the 
example above, and shows the relative number of 
simulation steps as a function of starting position.  
It is using a heated-object scale (black to red to 
yellow to white) as this uses both color and 
luminance to show relative value.  
 

 
 

Intuitively, one would think that starting 
positions near the outer edge would converge more 
slowly because the bob is lifted higher and thus 
starts with more energy.  However, this is not the 
case.  The “balloons” from before capture the bob 
relatively quickly, but the convergence times for 
the rest of the starting positions is about as chaotic 
as the resting positions. 

 
There are many ways to edit the scene, such as 

changing the position of the magnets, the strength 
of the magnets, the mass of the bob, gravity, and 
the damping.  For example, the following two 
figures show the result of increasing the strength 
of the red magnet 25%.  As can be seen, the bob 
comes to rest at the red magnet far more often than 
it did before, but, interestingly, there are still 

“strings of pearls” of green and blue amongst all 
the red. 
 

 
 

 
 

As another example, the following images show 
what happens when the red magnet (with its 
original strength) is changed from attractive to 
repulsive.  In the top figure, the path of the bob 
often approaches the red magnet, but then gets 
pushed away.  The image of the resting locations 
is all green and blue as expected, and is anti-
symmetric about the horizontal axis.  There are 
large regions of solid color, but also a significant 



amount of scattering of one color inside the other’s 
region. 

 

  
 

 
 
 

 
Conclusions 
 

A method for visualizing mechanical chaos has 
been developed.  In this method, a single image 
shows the eventual stopping points for all initial 
conditions.  It is then easy to compare the effect of 
different mechanical properties of the system such 
as pendulum length, coefficient of friction, and 
position and strength of the magnets. 
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