
 1

Proceedings of IDETC/CIE 2006
ASME 2006 International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference
September 10-13, 2006, Philadelphia, Pennsylvania, USA

DETC2006-99477

Accelerating the Hyperbolic Display of Complex 2D Scenes Using the GPU

Mike Bailey

Oregon State University

Nick Gebbie

University of California San Diego

Abstract

Hyperbolic geometry is a useful visualization technique for displaying a large quantity of two
dimensional data simultaneously. What distinguishes this technique is that one particular area can
be displayed in full detail with all other areas displayed in lesser detail. In this way, the entire
scene is still on the screen so that the entire set of relationships, as well as emergency indicators,
can always be seen. But, because the hyperbolic transformation equation is non-linear, it cannot
be placed in the standard graphics hardware 4x4 homogeneous matrix. Thus, using the hyperbolic
transformation prevents full use of the graphics pipeline hardware, and drastically reduces
interactive speed. This paper discusses a way to recoup this display performance by encoding the
hyperbolic transform into an OpenGL vertex shader that resides on the graphics GPU hardware.
In this way, the hyperbolic transform can still be used interactively, even for very complex 2D
scenes.

1 Introduction

There are many applications in which a user wants to display a complex 2D scene. Such applications include
mechanical drawings, maps, network diagrams, etc. But, such display applications face a tradeoff in display
interaction. It is nice to be able to view the whole scene at once. This allows all spatial relationships to be shown in
context. But, at that scale, no detail can be seen. Zooming in is also nice. It provides the detail, but loses the
overall context. It would be nice to find a way to do both.

A good solution is to use hyperbolic display techniques [Munzner1995, Walter2003]. A hyperbola is bounded by
asymptotes, that is, no matter how far out one goes, the hyperbola approaches the asymptotes but never reaches
them. In hyperbolic display techniques, we look for a transformation that will always keep the scene bounded,
regardless of how large it gets. But, the transformation that accomplishes this is nonlinear, and thus cannot by used
with the standard fast computer graphics hardware display methods. This makes large, intricate hyperbolic scenes
slow to display and sluggish to interact with.

2 Polar Hyperbolic Displays

The fundamental principle of using hyperbolic geometry in 2D information visualization displays is to transform all
scene geometry, regardless of actual size, into the range [-1.,+1.]. There are several ways to do this, but we have
had the best visualization experience with doing it in polar coordinates as described here. The original 2D
coordinates are translated so that the region of interest is at the origin. They are then converted to polar coordinates:
 R = sqrt(X2+Y2) (1)
 Θ = atan2(Y, X) (2)

 2

This angle is left unchanged, but the radius is modified so that it never becomes larger than 1.
 R’ = R / (R+K) (3)

K is a constant that determines how focused one is on the center of the scene, at the expense of the rest of the scene.
Clearly a small K value forces most of the scene to the circumference where R=1. Similarly, a large value of K
forces most of the scene to the center where R=0.

Having transformed R into R’, the angle is re-incorporated:
 X’ = R’cos Θ (4)
 Y’ = R’sin Θ (5)

This can be further simplified by noting that since:
 cos Θ = X / R (6)
 sin Θ = Y / R (7)

then X’ and Y’ can be simplified to:
 X’ = X / (R+K) (8)
 Y’ = Y / (R+K) (9)

The following figures show how this appears visually. Figure 1 below shows a map of the major streets of San
Diego, California. There are over 120,000 polylines in the scene, comprising over 320,000 individual line segments.
This is a nice overall view, but it is difficult to see street detail in the dense portions of the map. In the following
figures, we will zoom in on the downtown area of San Diego, centering on Balboa Park. Figure 2 shows a
Euclidean geometry zoom. It reveals more detail, but at the expense of the overall context of the display. In the
most-zoomed-in view (Figure 2c), the viewer has completely lost the sense of where they are in the overall map.

Figure 3 shows a polar hyperbolic zoom. It progressively zooms into the region of interest by decreasing the value
of the constant K. Note that there is a continual sense of where we are in the overall map.

 3

Figure 1: 320,000 Line Segment Scene of San Diego Streets

Figure 2a-c: Progressive Euclidean Zooming

 4

Figure 3a-d: Progressive Hyperbolic Zooming, using K values of 20., 5., 2., and 1.

3 Why It Matters Where the Hyperbolic Transform is Implemented

Figure 4: Standard Graphics Care Usage with Linear Transformations

Transform,
Projection,

and Lighting
To the

Monitor

Line and
Polygon

Rasterize

Application

Host
Computer

Fast Graphics

 5

Projection,
and Lighting

To the
Monitor

Line and
Polygon

Rasterize
Application Hyperbolic

Transform

Host Computer Fast Graphics

Transform

Today’s under-$200 graphics cards are capable of producing dynamic displays that, 10 years ago, were the sole
domain of million dollar flight simulators. This by itself creates many opportunities for engineering graphics
because we can display large datasets in a very realistic and interactive way. These graphics cards, displaying to a
standard monitor or projector, operate as shown in Figure 4. The application generates graphics commands and
sends them to the card. The speed of the card comes from implementing the standard 3D graphics functions of
transformation, projection, texturing, lighting, and rasterization in hardware.

For nonlinear transformations, such as the hyperbolic transform, life is different. Because this transform is non-
linear, it cannot use the graphics pipeline’s matrix hardware. Also, because it must come after the hardware
transform, the hardware transform must be pushed back onto the CPU also, as shown in Figure 5:

Figure 5: Standard Graphics Card Usage with Nonlinear Transformations

This cripples the display speed. To solve this, we turned to OpenGL vertex and fragment shaders. These shaders
allow developers to place their own code in the graphics hardware in place of the vertex processing and fragment
processing. We have programmed the dome projection as an OpenGL vertex shader. As shown here, this allows the
entire process to return to fast graphics hardware as shown in Figure 6:

Figure 6: GPU programmable Graphics Card Usage with Nonlinear Transformations

This allows us to have the best of all worlds: (1) large, information-rich datasets; (2) running at interactive speeds;
on (3) inexpensive, common, easy-to-develop commodity graphics platforms.

4 Coding it in GLSL

Here’s how to code this in an OpenGL vertex shader using the OpenGL Shading Language (GLSL) [Rost2006].
The constant K is passed in as an OpenGL uniform variable. The first step is to apply the model-view matrix
transformation to the original (x,y) point. This takes into account any translation, rotation, or scaling
transformations that the viewer had wanted. After that, the polar hyperbolic transformation is performed. Finally,
the projection matrix transformation is applied and the final point passed on to the rest of the pipeline. The code to
do this is shown below:

void main(void)
{
 vec4 pos = gl_ModelViewMatrix * gl_Vertex;
 float r = length(pos.xyz);
 pos.xyz /= (r+K);
 gl_Position = gl_ProjectionMatrix * pos;
}

Projection,
and Lighting

To the
Monitor

Line and
Polygon

Rasterize

Hyperbolic
Transform

Fast Graphics

Transform

Application

Host
Computer

 6

gl_ModelViewMatrix and gl_ProjectionMatrix are pre-defined GLSL variables. gl_Vertex is the
original coordinate passed by the program, typically with a glVertex*() call.

gl_Position holds the transformed coordinates that are sent downstream to the rest of the hardware.

length() is a built-in GLSL function that computes the square root of the sum of the squares of the coordinate
components of a point. Note the use of the “.xyz” construct. Because graphics engines are constructed as SIMD
machines, the shader languages are at their fastest when the code takes advantage of that kind of parallelism.

5 Cartesian Hyperbolic Displays

The polar form of the hyperbolic transform is visually appealing. Because the polar angle, Θ, remains the same
within the transformation, angular relationships are maintained. It is also possible, however, to create a hyperbolic
display in Cartesian form, like this:
 X’ = X / sqrt(X2+K2) (10)
 Y’ = Y / sqrt(Y2+K2) (11)

The nature of these equations guarantee that X’ and Y’ will never leave the region [-1.,1.]. They give results shown
here in Figure 7. Notice that, unlike the polar case, the X and Y dimensions can be translated independently, and
angular relationships are not maintained.

 7

Figure 7a-d: Cartesian Hyperbolic Display with K = 20., 5., 2., and 1.

6 Other Applications

We have also used this technique in terrain-mapping applications. Figure 8 shows how the “boot” of Italy is
centered in the window and then the value of K is reduced. The result is a zoom into the boot, but unlike a linear
scaling operation, the rest of the scene does not leave the window, it is merely shoved to the outside:

 8

Figure 8a-c: Hyperbolic Zoom into Mediterranean Image

7 Performance

Even though this is a nonlinear transform, the interactive speed is remarkable. But, using the hyperbolic vertex
shader does indeed incur a speed penalty over using the fixed-function pipeline to perform Euclidean panning and
zooming. For applications that are vertex-bound, the bottleneck is in the vertex processor. In these cases (such as
the San Diego map zoom), we have found the performance penalty to be around 10%. For applications that are
pixel-bound, the bottleneck is elsewhere and the slight slowing of the vertex processing makes no overall difference
in update speed.

8 Conclusions

Hyperbolic geometry is a very useful visualization technique for panning and zooming large complex 2D scenes,
while retaining the overall context. Its nonlinear transformation, however, has always forced it to be implemented in
the CPU. Worse yet, it has forced the scene transformations to be removed from the GPU and placed in the CPU as
well. With GPU programming, we can return both the scene transformation and the nonlinear hyperbolic
transformation back to the GPU, resulting in little or no speed penalty.

9 References

MUNZNER1995 Tamara Munzner and Paul Burchard, “Visualizing the Structure of the World Wide Web in 3D
Hyperbolic Space”, Proceedings of VRML '95 (San Diego, California, December 14-15, 1995), special issue of
Computer Graphics, pp 33-38, ACM SIGGRAPH.

ROST2006 Randi Rost, The OpenGL Shading Language, Addison-Wesley, 2006.

WALTER2003 Jörg Walter, Jörg Ontrup, Daniel Wessling, and Helge Ritter, “Interactive visualization and
navigation in large data collections using the hyperbolic space”, IEEE International Conference on Data Mining,
ICDM'03, pages 355-362, Melbourne, Florida, USA, November 2003.

