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Introduction

GPU Shaders are not just fglossyspecial
effects. In [Bailey2009] andJailey201],
we looked at some uses for GPU shade
visualization. In this article, we continu
with that pattern by covering two of t
newest features of OpenGLcempute
shaders andhader storage buffer objec
which were just announced lastmmer as
part of OpenGL 4.3.

Originally, OpenGL was for graphicwonly.
But, it wasn't long until practitioners we
gazing longingly at the power on the G
and wanting to use it for nagraphics dal-
parallel computing This created tt field
known as General Purpose GPU (GPG
[Owens2007]. This was quite effective, ¢
some amazing results were achieved, k
was still an awkward workaround requiri
the datgparallel problem to be recast a
pixel-parallel problem first.

True mainstream generpl#pose
programming on GPUs emer¢ with
NVIDIA’s Compute Unified Device
Architecture (CUDA) [Kirk2010]. Thit
treated the GPU as a real compute en
without any need to include graph
remnants. Later, OpenCL [Gaster20
Munshi2012] was developéd create :
multi-vendor GPUprogramming standai

OpenGL 4.3 also introducesthader storag
buffer objects whiclsupport the compul
shaders, and make it much easier to get
into and out of themThis means tha
finally, using the GPU for datparallel
visualization computing ia firsi-class
feature of OpenGLThis will have a ven
positive impact on realme visualizatio

techniques such as patrticle advect
isosurfaces, etc.

Introduction to OpenGL Compute
Shaders

Using compute shaders looks very much
a standard twgass renderinsolution. The
GPU gets invoked twice, or for the
compute operation and on¢@ more for
the graphics operation. The compute sh.
manipulates GPWbhased data. The Open(
rendering pipelinereates a scene based
those new data values. Tlpoces is
shown in Figure 1.

Figure1l. The computetsderparadigm
involves round-robirexecutiol between
the compute and rendering pieces of
application.
I'LL SEND YOU A HIGH-RES
VERSION OF THI¢

At this point, we will start diving down int
details, and will assumeowledgt of
OpenGL and GLSL shaderscluding how
to write them and how to compile and li
them!

Y For OpenGL background, see [Angel201
For GLSL shader background, see [Rost2(
and [Bailey2012]



An OpenGL compute shader is a single-
stage GLSL program that has no direct role
in the graphics rendering pipeline. A
compute shader sits outside the pipeline and
manipulates data that it finds in the OpenGL
buffers. With the exception of a handful of
dedicated built-in GLSL variables, compute
shaders look identical to all other GLSL
shader types. The programming syntax is
the same. They have access to the same data
that is found in the OpenGL readable data
types, such as textures, buffers, image
textures, atomic counters, etc. Their outputs
are any of the same OpenGL writeable data
types, such as some buffer types, image
textures, atomic counters, etc. But, they
have no previous-pipeline-stage inputs nor
next-pipeline-stage outputs because, to
them, there is no pipeline and there are no
other stages.

Comparison with OpenCL

In many ways, GLSL compute shaders look
a lot like OpenCL programs. Both
manipulate GPU-based data in a round-robin
fashion with the rendering. The
programming languages look simifaBut,
there are some important differences:

* OpenCL is its own entity. Using OpenCL
requires a several-step setup process in the
application program.

» OpenCL requires separate drivers and
libraries.

» Compute shaders use the same context as
OpenGL rendering. OpenCL requires a
context switch before and after invoking
its data-parallel compute functions.

» OpenCL has more extensive
computational support in its language.

In summary, it appears that OpenCL should
continue to be used for large GPU data-
parallel computing applications. But, for
many simpler applications, compute shaders

2 Most of the differences in language are
superficial, such as OpenCL using SIMD
variables named float[2-4] and GLSL using
vec[2-4].

will slide more easily into your existing
shader-based program.

What Is Different about Using a
Compute Shader Compared with
any other Shader Type?

For the most part, writing and using a
compute shader looks and feels like writing
and using any other GLSL shader type, with
these exceptions:

» The compute shader program must have
no other shader types in it.

» When creating a compute shader, use

GL_COMPUTE_SHADER as the shader

type in the glCreateShader( ) function call.

A compute shader has no concept of in or

out variables.

* A compute shader must declare the
number of work-items in each of its work-
groups in a special GLSL layout
statement.

This last bullet is worth further discussion.
In version 3, GLSL introduced thayout
qualifier to tell the GLSL compiler and
linker about the storage of your data. It has
been used for such things as telling
geometry shaders what their input and
output topology types are, what symbol
table locations certain variables will occupy,
and the binding points of indexed buffers.
In OpenGL 4.3, the use of the layout
gualifier has been expanded to declare the
local data dimensions, like this:

in;

l ayout ( | ocal _size x = 128 )

More will be covered on this later.
Shader Storage Buffer Objects

Oftentimes the tricky part of using GLSL
shaders for visualization is getting large
amounts of data in and out of them.
OpenGL has created several ways of doing
this over the years, but each seems to have
had something about it that made it



cumbersome for visualization use. For
example, textures and uniform buffer objects
can only be read from, not written back to.
Image textures can be both read and written,
but are backed by textures, which are not as
data-flexible as buffer objects.

In a CPU-only data-parallel application,
oftentimes the most convenient data
structure is an array of structures, where
each element of the array holds one instance
of all the data variables. But, none of these
GLSL storage methods have allowed that
familiar storage scheme to be used in shader
programming.

The new shader storage buffer object
(SSBO) was created to fix all that. SSBOs
cleanly map to arrays of structures, which
make them convenient and familiar for data-
parallel computing. Rather than talk about
them, it is easiest to show their use in actual
code. The following example shows a
simple particle system, which uses both
SSBOs and compute shaders. Listing 1
shows the CPU code being used to setup the
required position and velocity SSBOs.

Some things to note in the code:

» Generating and binding a shader storage
buffer object happens the same as any
other buffer object type, except for its
GL_SHADER_STORAGE_BUFFER
identifier.

* These SSBOs are specified with NULL as
the data pointer. The data could have
been filled here from pre-created arrays of
data, but oftentimes it is more convenient
to create the data on the fly and fill the
buffers rather than allocating large arrays
first. So, in this case, data values are filled
a moment later using buffer-mapping.

» The glBufferData( ) call shown here uses
the hint GL_STATIC_DRAW. The
OpenGL books all say to “use
GL_DYNAMIC_DRAW when the values
in the buffer will be changed often.” With
compute shaders, that phrase is now
incomplete. It needs to be changed to say

to “use GL_DYNAMIC_DRAW when the
values in the buffer will be changed often
from the CPU.” When the data values
will be changed from th&PU,
GL_STATIC_DRAW causes them to be
kept in GPU memory, which is what we
want.

» The expected call to giMapBuffer() has
been replaced with a call to
glMapBufferRange( ), which allows a
parameter specifying that the buffer will
be entirely discarded and replaced, thus
hinting to the driver that is should remain
in the memory (GPU) where it currently
lives.

» The calls to gIBindBufferBase( ) allow
these buffers to be indexed, meaning that
they are assigned integer indices which
can be referenced from the shader using a
layout qualifier.

Listing 2 shows how the compute shader
accesses the SSBOSome things to note:

» The shader code uses the same set of
structures to access the data as the C code
did, with the data types changed to match
GLSL syntax.

» The SSBO layout statements provide the
binding indices so that the shader knows
which SSBO to point to.

» The open brackets in the SSBO layout
statement show the new GLSL syntax to
define an array of structures. There can
actually be more items in the definition
than just that open-bracketed array, but it
is required that the open-bracketed item be
thefinal variable in the list.

Calling the Compute Shader

A compute shader is invoked from the
application with the following function:

gl D spat chConput e( nunmgx, nunmgy, hungz );
where the arguments are the number of work
groups in x, y, and z, respectively. A
compute shader expects you to treat your

data parallel problem as a 3D array of work



groups to processThe grid of work group
is shown in Figure 2.
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Figure2. The 3D grid ofwork groups
allows the data to be dimensioned i
way that is convenient to the applicat
I'LL GET YOU A HIGH-RES VERSION
OF THIS

Each work group consists of some nurr
of work items to process. The numbe
work groups times the number of wc
items per work group gives the total num
of elements that are being compu How
you divide your problen into work groups i:
up to you, however it is important
experiment with this as some combinati
will starve the GPU processors of work
do? We did experiment with the loc work
group size for one particular applicatic
The results are coming up in Figur:

Compute Shader Built-in Variables

GLSL compute shaders have several -in
variables. These are rmtcessible from ar
other shader types:

in uvec3 gl _Numor kG oups ;
const uvec3 gl _WorkG oupSi ze ;

in uvec3 gl _WorkG oupl D ;

in uvec3 gl _Local I nvocationl D ;

in uvec3 gl _d obal I nvocationl D ;
in uint gl _Local I nvocati onl ndex ;

3 Although,for a 2D problem, the numgz will |
1, and for a 1D problem, numgx and numgy
both be 1.

* Also, there are some OpenGL dri-imposed
limits on thenumber of work groups and the
work group size.

gl_NumWorkGroups are the number ¢
work groups in all three dimensions. T
are the same numbers as you used ii
glDispatchCompute( ) call.

gl_WorkGroupSize are the sizes of tt
work groups in all three dimensions. Tt
are the same numbers you used in the la
call.

gl_WorkGroupl D are the work grou
numbers in all three dimensions that
current instantiation of the computer sha
is in.

gl_L ocallnvocationl D is where, in all thre
dimensions, the current instantiation of
compute shader is inside its own wi

group.

gl_Globallnvocationl D is where, in al
three dimensions, the current instantiatiol
the compute shader is within
instantiations.

gl_L ocallnvocationindex isa 1D
abstraction of gl_LocallnvocationID. It
used to allocate worgroup shared da
arrays (which we aren’t covering he

These builtn variables have the followir
size ranges:

0 < gl_WorkGroupID < gl_NumWorkGroups — 1
0 < gl_LocallnvocationID < gl_WorkGroupSize — 1

gl_GloballnvocationID = gl_WorkGroupID *
gl_WorkGroupSize + gl_LocallnvocationID

gl_Locallnvocationindex = gl_LocallnvocationID.z *
gl_WorkGroupSize.y * gl_WorkGroupSize.x +
gl_LocallnvocationID.y * gl_WorkGroupSize.x

+ gl_LocallnvocationID.x

The Particle System Physics

Listing 4 shows the code perform the
particle system physics:

* A layout statement declares twork
group size to be 128x1x1



» Gravity (G) and the time step (DT) ¢
defined. G is a vec3 so that it can be L
in a singldine of code to produce tf
particle’s next position.

» This code runs once for each particle. -
variablegi d is that particle’s number i
the entire list of particlesgi d indexes
into the array of structures.

TR =

Figure 3. The particle gstemupdates at a
rate of 1.3gigaparticles per secol
I'LL SEND YOU A HIGH-RES
VERSIUON OF THI¢

Particle Advection

Listing 5shows how the particle systernr
turned into a firsbrder visualization particl
advection, being fed by a velocity equat
as a function of particle locatic

Notice that:

» The code uses #defines to simul
typedefs. GLSldoes not (yet) suppc
typedefs, which, I thinkmpacts the
readability of the codeln this case, eve
though both points and velocities
really vec3sit helps the code’s readabil
when one cadistinguish a coordina
from a vector.

» This code runs once for each particle. -
variablegi d isthe global ID, that i: the
particle’s number in the entire list
particles. gi d indexes into the array
structures.

« The Velocity( )function compute
(vx,vy,vz) as a function of positio

» The equation is defined for x,y,z betwe
-1. and 1. If a point has moved oul
bounds, it is reset to its original positi

e The line
pp = p + DT * vel;
performs a firserder particle ste

» The particle’s color is set fm the three
velocity componentss a way to kee
track of each particle direction. It cot
easily be colored to show other quanti

However, nost 3D flow field datéds not
given as an equation. Listiigshows how
one would hide the velocity field values i
3D texture, using thr, g, and b textur
components for the X, y, and z veloc
components [Bailey2011]The only trick is
that the position must be converted fromr
coordinate values in the ran¢-1.,1.] to the
texture lookup range of [0.,1.]. The cc
line

vecd stp = ( pos + 1. ) [ 2.;

does that for us.




Figure4. A visualization particle
advections like the particle system, b
includes a velocity vector lookt
'LL SEND YOU A HIGH-RES
VERSION OF THIS

Performance

The code was tested with048,57! (1024)
particles on an NVDIA GeForce 48!
Different work group sizes wetested.
Figure 5 shows the compute spe¢
measured in GigaParticles/Sec(

GigaParticles / Sacond

Work Group Size
Figureb5. This graph shows theompute
shader performance asum€tion ofwork
group size.
'LL SEND YOU A HIGF-RES
VERSIUON OF THI¢

The top performance was 1.3
gigaparticles/sec resulting froenwork
group size of 64. On the 480, e
Streaming Multiprocessor has 32 SIN
units to perform the data paedlparticle

advection. M work group size saller than
32 would make sense, as it would le
some of those units unused. By usir
work group &e of exactly 32, howeve
anytime the execution blocks (for a mem
access, for instance) the SIMD urwould
have nothing to do. Thu,makes sere
that a work group size of &t more would
producebetter performance than . Figure
5 indicates that, for this applicati at least,
beyond 64 doesn’t heknd even hurt
some. This is applicatiotdependent.
Different shader applications behe
differently, and so it is best to benchm
rather than assume.

Conclusions

After many years of using the GPU data-
parallelvisualization computing b
employing various hacks and workarour
it is a relief to finally have all of the piec
become firsilass citizens of the GLS
shader languagdNow we can realize tt
full potential of GPGPU using-looking
arrays of structures and figgained dati
parallel computingall within the
comfortableconfines of OpenG.

We do have to change some of our rule
thumb, however. The Opé&t books all
say to ‘use GL_DYNAMIC_DRAW wher
the values in the buffer will be chang
often” . That now needs beupdated to
say to ‘use GL_DYNAMIC_DRAW wher
the values in the buffer will be chang
oftenfrom the CPU’
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Listing 1. Allocating and Filling the Shader Storage Bufidsjects

#def i ne NUM _PARTI CLES 1024*1024 // 1M particles to nmove
#def i ne WORK_GROUP_SI ZE 128 /1 # work-itens per work-group

struct pos

{
b

struct vel

float x, y, z, w, // positions

float vx, vy, vz, vw, /1 velocities

i
/1 need to do this for both position and velocity of the particles:

GLuint posSSho;
GLui nt vel SSho

gl GenBuffers( 1, &posSSho);
gl Bi ndBuf f er ( GL_SHADER STORAGE BUFFER, posSSho );
gl Buf f er Dat a( GL_SHADER STORAGE_BUFFER,
NUM PARTI CLES * sizeof (struct pos),
NULL, GL_STATI C_DRAW);
Gint bufMask = G._MAP_WRITE BIT | G._MAP_I NVALI DATE BUFFER BI T ;
/1 the invalidate nakes a big difference when re-witing
struct pos *points = (struct pos *) gl MapBuffer Range(
GL_SHADER STORAGE _BUFFER, 0,
NUM PARTI CLES * sizeof (struct pos), bufMask );

for( int i = 0; i < NUMPARTICLES; i++ )
{
points[ i ].x = Ranf( XM N, XMAX );
points[ i ].y = Ranf( YMN, YMAX );
points[ i ].z = Ranf( ZM N, ZNAX );
points[ i ].w=1.;

}
gl UnmapBuf f er ( G__SHADER STORAGE BUFFER ) ;

gl GenBuffers( 1, &vel SSho);
gl Bi ndBuf f er ( GL_SHADER STORAGE BUFFER, vel SSho );
gl Buf f er Dat a( GL_SHADER STORAGE_BUFFER,
NUM PARTI CLES * sizeof (struct vel),
NULL, GL_STATI C_DRAW);
struct vel *vels = (struct vel *) gl MapBufferRange(
GL_SHADER_STORAGE_BUFFER, 0,
NUM PARTI CLES * sizeof (struct vel), bufMask );



for( int i = 0; i < NUMPARTICLES; i++ )

{
vels[ i ].vx = Ranf( VXM N, VXMAX );
vels[ i ].vy = Ranf( VYM N, VYMAX );
vels[ i ].vz = Ranf( VZM N, VZMAX );
vels[ i ].vw = 0.;

}
gl UnmapBuf f er ( G__SHADER STORAGE BUFFER ) ;

gl Bi ndBuf f er Base( G._SHADER STORAGE BUFFER, 4, posSSbo );
gl Bi ndBuf f er Base( G._SHADER STORAGE_BUFFER, 5, velSSbo );



Listing 2. How the Shader Storage Buffer Objects Look inShader

#version 430 compatibility
#ext ensi on G__ARB _comput e_shader

enabl e

#ext ensi on G__ARB shader _storage_buffer_object : enabl e;

struct pos

{

vecd pxyzw, /1 positions
i
struct ve
{

vecd vXyzw, /1 velocities
i

| ayout ( std140, binding=4 ) buffer Pos
struct pos Positions[ ];
b

[ ayout ( std140, binding=5) buffer Ve
struct vel Velocities[ ];
1

{

/1 array of structures

{

/1 array of structures



Listing 3. Invoking the Compute Shader
gl UseProgram MyConput eShader Program ) ;

gl Di spat chConput e( NUM PARTICLES / WORK GROUP_SIZE, 1, 1);
gl MenoryBarrier( G._SHADER STORAGE BARRIER BIT );

gl UseProgram MyRenderi ngShader Program);

/'l render the scene



Listing 4. Shader Code for One Particle
| ayout ( | ocal size x = 128, local _size y =1, local _size z = 1) in;

const vec3 G vec3( 0., -9.8, 0. );

const float DT 0. 1;

uint gid = gl _d obal I nvocati onl D. x; /!l the .y and .z are both 1
vec3 p = Positions[ gid ].pxyzw xyz;

vec3 v = Velocities[ gid ].vxyzw xyz;

vec3 pp = p + v*DT + .5*DT*DT*G

vec3d vp = v + GDT;

Posi ti ons| gid ].pxyzw. xyz = pp;

Velocities[ gid ].vxyzw xyz = vp;



Listing 5. Visualization First-order Particle Advection ugia Velocity Equation

/1 roll your own typedefs:

#def i ne poi nt vec3
#defi ne vel ocity vec3
vel ocity
Vel ocity( point pos )
{
/1l -1. <= pos.X,y,z <= +1
float x = pos.X;
float y = pos.y;
float z = pos. z;
return vel ocity(
y *z* (yy+z'z),
X *z* ( xX*x + z*z ),
x*y* (x*x +y*y)
);
}
voi d
mai n( )
{

uint gid = gl _d obal I nvocati onl D. x;

point p
poi nt pp

Positions[ gid ].pxyzw xyz;
p

if( any( greaterThan( abs(p.xyz), point(1.,1.,1.) ) ) )
{

pp = OrigPositions[gid].pxyzw. xyz;

Colors[ gid ].crgba = vec4( 0., 0., 0., 1. );
}
el se
{
velocity vel = Velocity( p );
pp = p + DT * vel;
Colors[ gid ].crgba = vec4( abs(vel)/3., 1. );
}

Positions[ gid ].pxyzw xyz = pp;



Listing 6. Visualization First-order Particle Advection ugia Texture Velocity Field

vel ocity
Vel ocity( vec3 pos )

/1l -1. <= pos.X,y,z <= +1
vec3 stp = ( pos + 1. ) [/ 2.;

/1 0. <=s,t,p <= 1.
return texture( velocityTexture, stp ).rgb;



