
Using GPU

Mike Bailey, Oregon State University

Introduction

GPU Shaders are not just for glossy
effects. In [Bailey2009] and [Bailey2011
we looked at some uses for GPU shaders in
visualization. In this article, we continue
with that pattern by covering two of the
newest features of OpenGL – compute
shaders and shader storage buffer objects,
which were just announced last
part of OpenGL 4.3.

Originally, OpenGL was for graphics
But, it wasn’t long until practitioners were
gazing longingly at the power on the GPU
and wanting to use it for non-graphics data
parallel computing. This created the
known as General Purpose GPU (GPGPU)
[Owens2007]. This was quite effective, and
some amazing results were achieved, but it
was still an awkward workaround requiring
the data-parallel problem to be recast as a
pixel-parallel problem first.

True mainstream general-purpose
programming on GPUs emerged
NVIDIA’s Compute Unified Device
Architecture (CUDA) [Kirk2010]. This
treated the GPU as a real compute engine
without any need to include graphics
remnants. Later, OpenCL [Gaster2012,
Munshi2012] was developed to create a
multi-vendor GPU-programming standard.

OpenGL 4.3 also introduced shader storage
buffer objects which support the compute
shaders, and make it much easier to get data
into and out of them. This means that,
finally, using the GPU for data-
visualization computing is a first
feature of OpenGL. This will have a very
positive impact on real-time visualization

Using GPU Shaders for Visualization, III

Mike Bailey, Oregon State University
mjb@cs.oregonstate.edu

glossy special
Bailey2011],

we looked at some uses for GPU shaders in
In this article, we continue

with that pattern by covering two of the
compute

shader storage buffer objects,
 summer as

inally, OpenGL was for graphics only.
But, it wasn’t long until practitioners were
gazing longingly at the power on the GPU

graphics data-
. This created the field

known as General Purpose GPU (GPGPU)
[Owens2007]. This was quite effective, and
some amazing results were achieved, but it
was still an awkward workaround requiring

parallel problem to be recast as a

purpose
programming on GPUs emerged with

evice
Architecture (CUDA) [Kirk2010]. This
treated the GPU as a real compute engine
without any need to include graphics
remnants. Later, OpenCL [Gaster2012,

to create a
programming standard.

shader storage
support the compute

shaders, and make it much easier to get data
This means that,

-parallel
a first-class

This will have a very
time visualization

techniques such as particle advection,
isosurfaces, etc.

Introduction to OpenGL Compute
Shaders

Using compute shaders looks very much like
a standard two-pass rendering
GPU gets invoked twice, once
compute operation and once (or more)
the graphics operation. The compute shader
manipulates GPU-based data. The OpenGL
rendering pipeline creates a scene based on
those new data values. This process
shown in Figure 1.

Figure 1. The compute shader
involves round-robin execution
the compute and rendering pieces of the

application.
I’LL SEND YOU A HIGH

VERSION OF THIS

At this point, we will start diving down into
details, and will assume knowledge
OpenGL and GLSL shaders, including how
to write them and how to compile and link
them.1

1 For OpenGL background, see [Angel2011].
For GLSL shader background, see [Rost2009]
and [Bailey2012]

techniques such as particle advection,

Introduction to OpenGL Compute

Using compute shaders looks very much like
pass rendering solution. The

GPU gets invoked twice, once for the
(or more) for

the graphics operation. The compute shader
based data. The OpenGL
creates a scene based on

process is

hader paradigm

execution between
the compute and rendering pieces of the

I’LL SEND YOU A HIGH-RES
ERSION OF THIS

At this point, we will start diving down into
knowledge of

, including how
to write them and how to compile and link

For OpenGL background, see [Angel2011].

For GLSL shader background, see [Rost2009]

An OpenGL compute shader is a single-
stage GLSL program that has no direct role
in the graphics rendering pipeline. A
compute shader sits outside the pipeline and
manipulates data that it finds in the OpenGL
buffers. With the exception of a handful of
dedicated built-in GLSL variables, compute
shaders look identical to all other GLSL
shader types. The programming syntax is
the same. They have access to the same data
that is found in the OpenGL readable data
types, such as textures, buffers, image
textures, atomic counters, etc. Their outputs
are any of the same OpenGL writeable data
types, such as some buffer types, image
textures, atomic counters, etc. But, they
have no previous-pipeline-stage inputs nor
next-pipeline-stage outputs because, to
them, there is no pipeline and there are no
other stages.

Comparison with OpenCL

In many ways, GLSL compute shaders look
a lot like OpenCL programs. Both
manipulate GPU-based data in a round-robin
fashion with the rendering. The
programming languages look similar.2 But,
there are some important differences:

• OpenCL is its own entity. Using OpenCL

requires a several-step setup process in the
application program.

• OpenCL requires separate drivers and
libraries.

• Compute shaders use the same context as
OpenGL rendering. OpenCL requires a
context switch before and after invoking
its data-parallel compute functions.

• OpenCL has more extensive
computational support in its language.

In summary, it appears that OpenCL should
continue to be used for large GPU data-
parallel computing applications. But, for
many simpler applications, compute shaders

2 Most of the differences in language are
superficial, such as OpenCL using SIMD
variables named float[2-4] and GLSL using
vec[2-4].

will slide more easily into your existing
shader-based program.

What Is Different about Using a
Compute Shader Compared with
any other Shader Type?

For the most part, writing and using a
compute shader looks and feels like writing
and using any other GLSL shader type, with
these exceptions:

• The compute shader program must have

no other shader types in it.
• When creating a compute shader, use

GL_COMPUTE_SHADER as the shader
type in the glCreateShader() function call.

• A compute shader has no concept of in or
out variables.

• A compute shader must declare the
number of work-items in each of its work-
groups in a special GLSL layout
statement.

This last bullet is worth further discussion.
In version 3, GLSL introduced the layout
qualifier to tell the GLSL compiler and
linker about the storage of your data. It has
been used for such things as telling
geometry shaders what their input and
output topology types are, what symbol
table locations certain variables will occupy,
and the binding points of indexed buffers.
In OpenGL 4.3, the use of the layout
qualifier has been expanded to declare the
local data dimensions, like this:

layout(local_size_x = 128) in;

More will be covered on this later.

Shader Storage Buffer Objects

Oftentimes the tricky part of using GLSL
shaders for visualization is getting large
amounts of data in and out of them.
OpenGL has created several ways of doing
this over the years, but each seems to have
had something about it that made it

cumbersome for visualization use. For
example, textures and uniform buffer objects
can only be read from, not written back to.
Image textures can be both read and written,
but are backed by textures, which are not as
data-flexible as buffer objects.

In a CPU-only data-parallel application,
oftentimes the most convenient data
structure is an array of structures, where
each element of the array holds one instance
of all the data variables. But, none of these
GLSL storage methods have allowed that
familiar storage scheme to be used in shader
programming.

The new shader storage buffer object
(SSBO) was created to fix all that. SSBOs
cleanly map to arrays of structures, which
make them convenient and familiar for data-
parallel computing. Rather than talk about
them, it is easiest to show their use in actual
code. The following example shows a
simple particle system, which uses both
SSBOs and compute shaders. Listing 1
shows the CPU code being used to setup the
required position and velocity SSBOs.

Some things to note in the code:

• Generating and binding a shader storage

buffer object happens the same as any
other buffer object type, except for its
GL_SHADER_STORAGE_BUFFER
identifier.

• These SSBOs are specified with NULL as
the data pointer. The data could have
been filled here from pre-created arrays of
data, but oftentimes it is more convenient
to create the data on the fly and fill the
buffers rather than allocating large arrays
first. So, in this case, data values are filled
a moment later using buffer-mapping.

• The glBufferData() call shown here uses
the hint GL_STATIC_DRAW. The
OpenGL books all say to “use
GL_DYNAMIC_DRAW when the values
in the buffer will be changed often.” With
compute shaders, that phrase is now
incomplete. It needs to be changed to say

to “use GL_DYNAMIC_DRAW when the
values in the buffer will be changed often
from the CPU.” When the data values
will be changed from the GPU,
GL_STATIC_DRAW causes them to be
kept in GPU memory, which is what we
want.

• The expected call to glMapBuffer() has
been replaced with a call to
glMapBufferRange(), which allows a
parameter specifying that the buffer will
be entirely discarded and replaced, thus
hinting to the driver that is should remain
in the memory (GPU) where it currently
lives.

• The calls to glBindBufferBase() allow
these buffers to be indexed, meaning that
they are assigned integer indices which
can be referenced from the shader using a
layout qualifier.

Listing 2 shows how the compute shader
accesses the SSBOs. Some things to note:

• The shader code uses the same set of

structures to access the data as the C code
did, with the data types changed to match
GLSL syntax.

• The SSBO layout statements provide the
binding indices so that the shader knows
which SSBO to point to.

• The open brackets in the SSBO layout
statement show the new GLSL syntax to
define an array of structures. There can
actually be more items in the definition
than just that open-bracketed array, but it
is required that the open-bracketed item be
the final variable in the list.

Calling the Compute Shader

A compute shader is invoked from the
application with the following function:

glDispatchCompute(numgx, numgy, numgz);

where the arguments are the number of work
groups in x, y, and z, respectively. A
compute shader expects you to treat your
data parallel problem as a 3D array of work

groups to process.3 The grid of work groups
is shown in Figure 2.

Figure 2. The 3D grid of w
allows the data to be dimensioned in a

way that is convenient to the application.
I’LL GET YOU A HIGH-RES VERSION

OF THIS

Each work group consists of some number
of work items to process. The number of
work groups times the number of work
items per work group gives the total number
of elements that are being computed.
you divide your problem into work groups is
up to you, however it is important to
experiment with this as some combinations
will starve the GPU processors of work to
do.4 We did experiment with the local
group size for one particular application.
The results are coming up in Figure 5.

Compute Shader Built-in Variables

GLSL compute shaders have several built
variables. These are not accessible from any
other shader types:

in uvec3 gl_NumWorkGroups ;
const uvec3 gl_WorkGroupSize ;
in uvec3 gl_WorkGroupID ;
in uvec3 gl_LocalInvocationID ;
in uvec3 gl_GlobalInvocationID ;
in uint gl_LocalInvocationIndex ;

3 Although, for a 2D problem, the numgz will be
1, and for a 1D problem, numgx and numgy will
both be 1.
4 Also, there are some OpenGL driver
limits on the number of work groups and on
work group size.

The grid of work groups

work groups

allows the data to be dimensioned in a
way that is convenient to the application.

RES VERSION

Each work group consists of some number
of work items to process. The number of
work groups times the number of work
tems per work group gives the total number

of elements that are being computed. How
m into work groups is

up to you, however it is important to
experiment with this as some combinations
will starve the GPU processors of work to

We did experiment with the local work
group size for one particular application.
The results are coming up in Figure 5.

in Variables

GLSL compute shaders have several built-in
accessible from any

gl_NumWorkGroups ;
gl_WorkGroupSize ;
gl_WorkGroupID ;
gl_LocalInvocationID ;
gl_GlobalInvocationID ;
gl_LocalInvocationIndex ;

for a 2D problem, the numgz will be

1, and for a 1D problem, numgx and numgy will

Also, there are some OpenGL driver-imposed
number of work groups and on the

gl_NumWorkGroups are the number of
work groups in all three dimensions. They
are the same numbers as you used in the
glDispatchCompute() call.

gl_WorkGroupSize are the sizes of the
work groups in all three dimensions. They
are the same numbers you used in the layout
call.

gl_WorkGroupID are the work group
numbers in all three dimensions that the
current instantiation of the computer shader
is in.

gl_LocalInvocationID is where, in all three
dimensions, the current instantiation of the
compute shader is inside its own work
group.

gl_GlobalInvocationID is where, in all
three dimensions, the current instantiation of
the compute shader is within all
instantiations.

gl_LocalInvocationIndex is a 1D
abstraction of gl_LocalInvocationID. It is
used to allocate work-group shared data
arrays (which we aren’t covering here).

These built-in variables have the following
size ranges:

0 ≤ gl_WorkGroupID ≤ gl_NumWorkGroups

0 ≤ gl_LocalInvocationID ≤ gl_WorkGroupSize

gl_GlobalInvocationID = gl_WorkGroupID *
gl_WorkGroupSize + gl_LocalInvocationID

gl_LocalInvocationIndex = gl_LocalInvocationID.z *
gl_WorkGroupSize.y * gl_WorkGroupSize.x +
gl_LocalInvocationID.y * gl_WorkGroupSize.x
+ gl_LocalInvocationID.x

The Particle System Physics

Listing 4 shows the code to perform the
particle system physics:

• A layout statement declares the

group size to be 128x1x1

are the number of
work groups in all three dimensions. They
are the same numbers as you used in the

are the sizes of the
work groups in all three dimensions. They
are the same numbers you used in the layout

are the work group
numbers in all three dimensions that the
current instantiation of the computer shader

is where, in all three
dimensions, the current instantiation of the
compute shader is inside its own work

is where, in all
three dimensions, the current instantiation of
the compute shader is within all

a 1D
abstraction of gl_LocalInvocationID. It is

group shared data
arrays (which we aren’t covering here).

in variables have the following

gl_NumWorkGroups – 1

gl_WorkGroupSize – 1

rkGroupID *
gl_LocalInvocationID

gl_LocalInvocationIndex = gl_LocalInvocationID.z *
orkGroupSize.x +

gl_WorkGroupSize.x

The Particle System Physics

to perform the

A layout statement declares the work

• Gravity (G) and the time step (DT) are
defined. G is a vec3 so that it can be used
in a single line of code to produce the
particle’s next position.

• This code runs once for each particle. The
variable gid is that particle’s number in
the entire list of particles. gid
into the array of structures.

Figure 3. The particle system
rate of 1.3 gigaparticles per second.

I’LL SEND YOU A HIGH
VERSIUON OF THIS

Particle Advection

Listing 5 shows how the particle system is
turned into a first-order visualization particle
advection, being fed by a velocity equation
as a function of particle location.

Notice that:
• The code uses #defines to simulate

typedefs. GLSL does not (yet) support
typedefs, which, I think, impacts the
readability of the code. In this case, even
though both points and velocities are
really vec3s, it helps the code’s readability
when one can distinguish a coordinate
from a vector.

• This code runs once for each particle. The
variable gid is the global ID, that is,
particle’s number in the entire list of
particles. gid indexes into the array of
structures.

Gravity (G) and the time step (DT) are
defined. G is a vec3 so that it can be used

line of code to produce the

This code runs once for each particle. The
is that particle’s number in

gid indexes

ystem updates at a

gigaparticles per second.
I’LL SEND YOU A HIGH-RES

VERSIUON OF THIS

shows how the particle system is
order visualization particle

advection, being fed by a velocity equation
as a function of particle location.

The code uses #defines to simulate
does not (yet) support

impacts the
. In this case, even

though both points and velocities are
it helps the code’s readability
distinguish a coordinate

This code runs once for each particle. The
the global ID, that is, the

particle’s number in the entire list of
indexes into the array of

• The Velocity() function computes
(vx,vy,vz) as a function of position.

• The equation is defined for x,y,z between
-1. and 1. If a point has moved out of
bounds, it is reset to its original position.

• The line
pp = p + DT * vel;

performs a first-order particle step.
• The particle’s color is set fro

velocity components, as a way to keep
track of each particle direction. It could
easily be colored to show other quantities.

However, most 3D flow field data
given as an equation. Listing 6
one would hide the velocity field values in a
3D texture, using the r, g, and b texture
components for the x, y, and z velocity
components [Bailey2011]. The only trick is
that the position must be converted from its
coordinate values in the range [
texture lookup range of [0.,1.]. The code
line

vec3 stp = (pos + 1.) / 2.;

does that for us.

function computes
(vx,vy,vz) as a function of position.

he equation is defined for x,y,z between
1. and 1. If a point has moved out of

bounds, it is reset to its original position.

order particle step.
The particle’s color is set from the three

as a way to keep
track of each particle direction. It could
easily be colored to show other quantities.

ost 3D flow field data is not
6 shows how

one would hide the velocity field values in a
e r, g, and b texture

components for the x, y, and z velocity
The only trick is

that the position must be converted from its
coordinate values in the range [-1.,1.] to the
texture lookup range of [0.,1.]. The code

= (pos + 1.) / 2.;

Figure 4. A visualization particle
advection is like the particle system, but

includes a velocity vector lookup.
I’LL SEND YOU A HIGH

VERSION OF THIS

Performance

The code was tested with 1,048,576
particles on an NVDIA GeForce 480.
Different work group sizes were
Figure 5 shows the compute speeds,
measured in GigaParticles/Second.

Figure 5. This graph shows the c
shader performance as a function of

group size.
I’LL SEND YOU A HIGH

VERSIUON OF THIS

The top performance was 1.3
gigaparticles/sec resulting from
group size of 64. On the 480, each
Streaming Multiprocessor has 32 SIMD
units to perform the data parallel particle

A visualization particle

is like the particle system, but
includes a velocity vector lookup.
I’LL SEND YOU A HIGH-RES

ON OF THIS

1,048,576 (10242)
particles on an NVDIA GeForce 480.
Different work group sizes were tested.
Figure 5 shows the compute speeds,
measured in GigaParticles/Second.

This graph shows the compute

unction of work

SEND YOU A HIGH-RES
VERSIUON OF THIS

 a work
group size of 64. On the 480, each
Streaming Multiprocessor has 32 SIMD

lel particle

advection. No work group size sm
32 would make sense, as it would leave
some of those units unused. By using a
work group size of exactly 32, however,
anytime the execution blocks (for a memory
access, for instance) the SIMD units
have nothing to do. Thus, it makes sens
that a work group size of 64 or more
produce better performance than 32.
5 indicates that, for this application
beyond 64 doesn’t help and even hurts
some. This is application-dependent.
Different shader applications behave
differently, and so it is best to benchmark
rather than assume.

Conclusions

After many years of using the GPU for
parallel visualization computing by
employing various hacks and workarounds,
it is a relief to finally have all of the pieces
become first-class citizens of the GLSL
shader language. Now we can realize the
full potential of GPGPU using C
arrays of structures and fine-grained data
parallel computing, all within the
comfortable confines of OpenGL

We do have to change some of our rules of
thumb, however. The OpenGL books all
say to “use GL_DYNAMIC_DRAW when
the values in the buffer will be changed
often” . That now needs to be
say to “use GL_DYNAMIC_DRAW when
the values in the buffer will be changed
often from the CPU.”

Acknowledgements

Many thanks to NVIDIA and Intel for thei
continued support of our shader research.
Also, much gratitude to Piers Daniell
NVIDIA for his help and patience as we
were first working with compute shaders.

o work group size smaller than
32 would make sense, as it would leave
some of those units unused. By using a

ize of exactly 32, however,
time the execution blocks (for a memory

access, for instance) the SIMD units would
it makes sense

or more would
better performance than 32. Figure

5 indicates that, for this application at least,
and even hurts

dependent.
ifferent shader applications behave

erently, and so it is best to benchmark

After many years of using the GPU for data-
visualization computing by

employing various hacks and workarounds,
it is a relief to finally have all of the pieces

class citizens of the GLSL
Now we can realize the

full potential of GPGPU using C-looking
grained data

all within the
confines of OpenGL.

We do have to change some of our rules of
GL books all

use GL_DYNAMIC_DRAW when
the values in the buffer will be changed

to be updated to
use GL_DYNAMIC_DRAW when

the values in the buffer will be changed

Many thanks to NVIDIA and Intel for their
of our shader research.

Piers Daniell of
NVIDIA for his help and patience as we
were first working with compute shaders.

References

Angel2011
Edward Angel and Dave Shreiner, Interactive
Computer Graphics: A Top-down Approach with
OpenGL, 6th Edition, Addison-Wesley, 2011.

Bailey2009
Mike Bailey, “Using GPU Shaders for
Visualization”, IEEE Computer Graphics and
Applications, Volume 29, Number 5, 2009, pp.
96-100.

Bailey2011
Mike Bailey, “Using GPU Shaders for
Visualization, II”, IEEE Computer Graphics and
Applications, Volume 31, Number 2, 2011, pp.
67-73.

Bailey2012
Mike Bailey and Steve Cunningham, Graphics
Shaders: Theory and Practice, Second Edition,
Taylor Francis, 2012.

Gaster2012
Benedict Gaster, Lee Howes, David Kaeli, Perhaad
Mistry, and Dana Schaa, Heterogeneous Computing with
OpenCL, Morgan-Kaufmann, 2012.

Kirk2010
David Kirk, Wen-mei Hwu, Programming

Massively Parallel Processors: A Hands-on
Approach, Morgan-Kaufmann, 2010.

Munshi2012
Aaftah Munshi, Benedict Gaster, Timothy
Mattson, James Fung, and Dan Ginsburg,
OpenCL Programming Guide Addison-Wesley,
2012.

Nichols1998
Bradford Nichols, Dick Buttlar, and Jacqueline Proudx
Farrell, Pthreads Programming, O’Reilly, 1998.

Owens2007
John Owens, David Luebke, Naga Govindaraju, Mark
Harris, Jens Krüger, Aaron E. Lefohn, and Timothy
Purcell, “A Survey of General-Purpose Computation on
Graphics Hardware”, Computer Graphics Forum, 26(1),
March 2007, pp. 80-113.

Rost2009
Randi Rost, Bill Licea-Kane, Dan Ginsburg,
John Kessenich, Barthold Lichtenbelt, Hugh
Malan, and Mike Weiblen, OpenGL Shading
Language, Addison-Wesley, 2009.

Listing 1. Allocating and Filling the Shader Storage Buffer Objects

#define NUM_PARTICLES 1024*1024 // 1M particles to move
#define WORK_GROUP_SIZE 128 // # work-items per work-group

struct pos
{
 float x, y, z, w; // positions
};

struct vel
{
 float vx, vy, vz, vw; // velocities
};

// need to do this for both position and velocity of the particles:

GLuint posSSbo;
GLuint velSSbo

glGenBuffers(1, &posSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, posSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER,

 NUM_PARTICLES * sizeof(struct pos),
 NULL, GL_STATIC_DRAW);

GLint bufMask = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT ;
// the invalidate makes a big difference when re-writing

struct pos *points = (struct pos *) glMapBufferRange(
 GL_SHADER_STORAGE_BUFFER, 0,

NUM_PARTICLES * sizeof(struct pos), bufMask);

for(int i = 0; i < NUM_PARTICLES; i++)
{

points[i].x = Ranf(XMIN, XMAX);
points[i].y = Ranf(YMIN, YMAX);
points[i].z = Ranf(ZMIN, ZMAX);
points[i].w = 1.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

glGenBuffers(1, &velSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, velSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER,

 NUM_PARTICLES * sizeof(struct vel),
 NULL, GL_STATIC_DRAW);

struct vel *vels = (struct vel *) glMapBufferRange(
 GL_SHADER_STORAGE_BUFFER, 0,

NUM_PARTICLES * sizeof(struct vel), bufMask);

for(int i = 0; i < NUM_PARTICLES; i++)
{

vels[i].vx = Ranf(VXMIN, VXMAX);
vels[i].vy = Ranf(VYMIN, VYMAX);
vels[i].vz = Ranf(VZMIN, VZMAX);
vels[i].vw = 0.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 4, posSSbo);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 5, velSSbo);

Listing 2. How the Shader Storage Buffer Objects Look in the Shader

#version 430 compatibility
#extension GL_ARB_compute_shader : enable
#extension GL_ARB_shader_storage_buffer_object : enable;

struct pos
{
 vec4 pxyzw; // positions
};

struct vel
{
 vec4 vxyzw; // velocities
};

layout(std140, binding=4) buffer Pos {
 struct pos Positions[]; // array of structures
};

layout(std140, binding=5) buffer Vel {
 struct vel Velocities[]; // array of structures
};

Listing 3. Invoking the Compute Shader

glUseProgram(MyComputeShaderProgram);
glDispatchCompute(NUM_PARTICLES / WORK_GROUP_SIZE, 1, 1);
glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);

 . . .

glUseProgram(MyRenderingShaderProgram);

// render the scene

Listing 4. Shader Code for One Particle

layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;

const vec3 G = vec3(0., -9.8, 0.);
const float DT = 0.1;
 . . .
uint gid = gl_GlobalInvocationID.x; // the .y and .z are both 1
vec3 p = Positions[gid].pxyzw.xyz;
vec3 v = Velocities[gid].vxyzw.xyz;
vec3 pp = p + v*DT + .5*DT*DT*G;
vec3 vp = v + G*DT;
Positions[gid].pxyzw.xyz = pp;
Velocities[gid].vxyzw.xyz = vp;

Listing 5. Visualization First-order Particle Advection using a Velocity Equation

// roll your own typedefs:

#define point vec3
#define velocity vec3

velocity
Velocity(point pos)
{
 // -1. <= pos.x,y,z <= +1
 float x = pos.x;
 float y = pos.y;
 float z = pos.z;
 return velocity(

y * z * (y*y + z*z),
x * z * (x*x + z*z),
x * y * (x*x + y*y)

);
}

void
main()
{
 uint gid = gl_GlobalInvocationID.x;

 point p = Positions[gid].pxyzw.xyz;
 point pp = p;

 if(any(greaterThan(abs(p.xyz), point(1.,1.,1.))))
 {
 pp = OrigPositions[gid].pxyzw.xyz;
 Colors[gid].crgba = vec4(0., 0., 0., 1.);
 }
 else
 {
 velocity vel = Velocity(p);
 pp = p + DT * vel;
 Colors[gid].crgba = vec4(abs(vel)/3., 1.);
 }

 Positions[gid].pxyzw.xyz = pp;
}

Listing 6. Visualization First-order Particle Advection using a Texture Velocity Field

velocity
Velocity(vec3 pos)
{
 // -1. <= pos.x,y,z <= +1
 vec3 stp = (pos + 1.) / 2.;

 // 0. <= s,t,p <= 1.
 return texture(velocityTexture, stp).rgb;
}

