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Abstract

Continuing our research in explanation-oriented lan-
guage design, we present a domain-specific visual language
for explaining probabilistic reasoning. Programs in this
language, called explanation objects, can be manipulated
according to a set of laws to automatically generate many
equivalent explanation instances. We argue that this in-
creases the explanatory power of our language by allowing
a user to view a problem from many different perspectives.

1 Introduction
In this paper we present a domain-specific visual lan-

guage for explaining probabilistic reasoning. This language
is an explanation-oriented language, a language whose pri-
mary goal is not to describe the computation of values, but
to provide explanations of how and why those values are
produced. A significant feature of the language, and a con-
tribution to explanation-oriented language design in gen-
eral, is the ability to automatically derive many equivalent
explanations from a single initial explanation. This allows
a user to examine a problem from many different points of
view, increasing the explanatory power of the language at
no additional cost to the explanation creator.

Probabilistic and statistical reasoning is an important
component of scientific research and many practical situa-
tions in every day life, but it is often difficult for people with
little or no corresponding educational background. Even
simple conditional probability problems can cause confu-
sion among laypeople, and disbelief of counter-intuitive so-
lutions often remains despite elaborate justifications.

Consider the following puzzle: Three coins are flipped.
Given that two of the coins have come up heads, what is the
probability that the third has come up tails? Many people
respond that the probability is 50%. But it is, in fact, 75%.

To understand the above puzzle, one’s best recourse is
to ask somebody who already understands the problem for
an explanation. Personal explanations are ideal because ex-
plainers can rephrase explanations, answer questions, clar-
ify assumptions, and provide related examples as further il-
lustration. Unfortunately, personal explanations are a com-
paratively scare resource—they are not always available and
cannot be easily shared or reused.

When a personal explanation is unavailable, one might
seek other explanatory material on the web or in a text-
book. These explanations have much higher availability,
shareability, and reusability. A web-based explanation, in
particular, can be accessed any number of times from any-
where in the world. The trade-off is that these explanations
lack the adaptability of a personal explanation.

The goal of our DSL is to combine the positive aspects
of both personal and electronically-available explanations.
An explanation designer, who understands the probability
problem to be explained, could use the language to cre-
ate an explanation object and post it on the web, making
it widely available and reusable. By applying transforma-
tions we can take this single explanation and automatically
generate many alternative, equivalent explanations. Con-
sumers of this explanation, who do not yet understand the
problem, could navigate between these alternatives, making
the explanation object flexible and adaptive.

Our goal is not, however, to replace personal or web-
based explanations, but rather to complement them. For
example, a web page might contain textual and graphical
explanations of the problem, links to background material,
and an explorable explanation object.

2 Previous Work
This work furthers our exploration and definition of the

explanation-oriented language paradigm, and expands on
previous work in the domain of probability and probabilistic
reasoning. We first promoted explainability as a primary de-
sign criterion in [4], where we presented a visual language
for defining and explaining strategies in game theory.

Our work in probabilistic reasoning began in [3], where
we presented a DSL embedded in Haskell (DSEL) for cre-
ating and manipulating probabilistic values. In this lan-
guage, probabilistic values are represented as probability
distributions, essentially lists of values paired with asso-
ciated probabilities. Building on this work, we designed
another DSEL for describing explanations of probabilistic
reasoning which is presented in [5], which also contains the
initial ideas for the visual notation presented here.

Both the explanation DSEL and this visual notation rely
heavily on a “story-telling” model of explanations. In this
model, an explanation is a sequence of steps that guide the
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Figure 1. Explaining the three-coins problem

user from some initial state to the explanandum1, where
each step is a well-understood operation that transforms the
explanation state. In the next section we introduce our vi-
sual language and provide a corresponding formal notation
which can be used to define an explanation semantics and
derive theorems for generating alternative explanations.

3 Visual Explanations
In order to realize the story-telling metaphor, we must

identify a representation of state within the domain, and a
set of composable operations. Figure 1 demonstrates our
adaption of this model to the domain of probabilistic rea-
soning with an explanation of the three-coins problem in-
troduced in Section 1. The state, shown at each step of the
explanation, is a probabilistic distribution, while operations
correspond to the annotated transitions between states. We
refer to the overall structure as a distribution graph.

Distributions. A probability distribution of type 〈A〉 is a
function D : A→ [0..1], such that ∑(x,p)∈D p = 1. In our for-
mal notation, we give distributions explicitly by writing the
probabilities of values as superscript percentages. For ex-
ample, coin = 〈H60,T 40〉 is the distribution of a loaded coin
that lands on heads with 60% probability. In this example,
coin has type 〈C〉 where type C contains values {H,T}.

Visually, we represent distributions using the common
metaphor of spatial partitioning. A horizontal area is parti-
tioned into blocks which contain values of the appropriate
type; the area of each block is proportional to the probabil-
ity of the contained value.

1The thing that is to be explained.

Spatial partitioning is a good metaphor for represent-
ing probability distributions since it captures many abstract
probabilistic axioms. For example, the sum of areas of all
partitions equals the area of the original rectangle (which
represents 100% probability), and as the area of one parti-
tion increases, the area of other partitions must necessarily
decrease. From the perspective of operations which trans-
form this state, we can view the probability space as a re-
source which operations can split, merge, and redistribute
amongst values.

Distribution Graphs. A distribution graph is given by
a sequence of distributions D1 . . .Dk where each Di+1 is
derived from Di by a distribution transformation, and the
blocks of Di and Di+1 are connected by a set of multi-edges.
(To simplify our notation in the following, we write A(n..m)

for the sequence An . . .Am; for the special case n = 1, we
write more concisely A(m)).

In the visual language, a transformation is indicated by
the operation name on the left (e.g. generate, filter, group)
and an annotation describing the transformation on the
right. Formally, a distribution transformation is some func-
tion f : 〈A〉 → 〈B〉. A multi-edge is a pair (V,W ) where
V ⊆ Di and W ⊆ Di+1, and either |V | = 1 or |W | = 1 (or
both). Thus, each multi-edge corresponds to a set of plain
edges. Together, a distribution transformation and set of
multi-edges form an edge level, Ei = fi�Mi, where Mi is
the set of all multi-edges between Di and Di+1.

A distribution graph of level k is a pair G = (D(k),E(k−1))
that contains a list of k distributions and a list of k− 1
edge levels. Note that although each transformation has an
associated annotation, we do not formally represent these
or consider annotation transformations; this could be ad-
dressed in future work.

As a notational aside, in our application domain we often
deal with heterogeneous lists, whose types we write as T (k)

for a list with k elements of types T1 . . .Tk.2 We also use this
notation for individual lists. For example, 3H T represents
a result of a die roll followed by two coin flips. Assuming
the type R = {1, . . . ,6}, the type of this value is RCC. We
use juxtaposition to denote the addition of elements to lists
and the concatenation of two lists.

In the rest of this section we present a subset of avail-
able operations for transforming distributions. For a com-
plete listing, please refer to our previous work in [5]. For
each operation we give a high-level description and define
an explanation semantics which illustrates the evolution of
distributions over the operation.

Generators. Used primarily to introduce new proba-
bilistic events into a distribution graph, a generator function
f takes a value and injects it into a distribution. That is,
f = λx.xD where xD is short for {(xy, p) | (y, p) ∈ D}.

2A heterogeneous list of length k is isomorphic to a k tuple.
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For example, to introduce the throw of a loaded coin we
can define the following generator throwCoin : A→ 〈AC〉.

throwCoin = λx.xcoin = λx.〈xH60,xT 40〉

The distribution transformation from D1 to D2 induced by
a generator f = λx.xD is attained by applying f to every
element in D1 and scaling the probabilities, as follows.

λD1.{(xy, pq) | (x, p) ∈ D1,(y,q) ∈ D}

In the visual language, generator edges have one tail, con-
nected to a block in D1, and many heads, connected to the
corresponding blocks in the sub-distribution of D2.

The explanation semantics of a generator f are defined
as a function that maps a distribution to a distribution graph.

[[ f ]] = λD1.(D1D2,E1)
where D2 = f (D1)

E1 = f�{(x,D2|x) | x ∈ D1}
D2|x = {(x′y, p) ∈ D2 | x′ = x}

Filters. If p is a predicate on A, the filter LpM is a distribu-
tion transformation from D1 to D2 of type 〈A〉→ 〈A〉, which
removes blocks from D1 and redistributes the area of elim-
inated blocks proportionally among all remaining blocks in
D2. Edges from eliminated blocks in D1 end with termi-
nating bars, while edges from passing blocks connect to the
corresponding blocks in the result. The explanation seman-
tics of filtering is defined as follows.

[[LpM]] = λD1.(D1D2,E1)
where c = 1−∑(x,q)∈D,¬(p(x)) q

D2 = {(x,q/c) | (x,q) ∈ D1, p(x)}
E1 = LpM�{({x},{x}) | x ∈ D2}

Groups. A grouping operation introduces a simplified
view of a distribution, hiding some of the underlying struc-
ture by visually merging some blocks. This is performed
based on a function f which maps elements of distribution
D1 onto some type. All elements from D1 that are mapped
to the same value are grouped together in the resulting dis-
tribution D2; this is expressed by the notation D1/ f .

A grouped distribution has the type 〈〈A〉〉3 and is visu-
ally represented by a thicker border. A distribution remains
grouped until the grouping is removed by an ungroup op-
eration (see below). If the input distribution is not already
a grouped distribution, grouping has the type 〈A〉 → 〈〈A〉〉.
Otherwise, the type is 〈〈A〉〉 → 〈〈A〉〉, which means that the
additional group operation extends the existing grouping.

Edges connect each block in D1 to the corresponding
block in D2, meaning that each block in D1 will have ex-
actly one outbound edge while blocks in D2 may have many
inbound edges.

3Strictly speaking, the innermost distribution is not a proper distribu-
tion because the probabilities do not sum up to 100%.

The explanation semantics of grouping is defined below.

[[. f ]] = λD1.(D1D2,E1)
where D2 = {(X ,∑(x,p)∈X p) | X ∈ D1/ f }

E1 = . f�{({x},X) | X ∈ D2,x ∈ X}

The definition of any distribution transformation is lifted in
the obvious way to grouped distribution. Given a grouped
distribution D′ = . f (D), the application of a distribution
transformation g to D′ is essentially moved to the underly-
ing distribution D, that is, g(D′) = . f (g(D)).

Ungroups. Ungrouping simply removes the view intro-
duced by a grouping operation, restoring the underlying dis-
tribution. The operation takes a grouped distribution of type
〈〈A〉〉 and takes the union of all groups to produce a distri-
bution of type 〈A〉.

[[/]] = λD1.(D1D2,E1)
where D2 = {(x, p) | X ∈ D1,(x, p) ∈ X}

E1 = /�{(X ,{x}) | X ∈ D1,x ∈ X}

Note that group and ungroup are not truly inverses since the
composed view generated by consecutive groupings will be
removed by a single ungroup operation.

Maps. A map transforms a distribution by applying a
function f to all values in the distribution. A distribution
transformation can be obtained by grouping with f and then
replacing each group with the common value the elements
in each group are mapped to. When f is one-to-one, a map-
ping does not affect the structure of the distribution, only
the values within each block.

[[∗ f ]] = λD1.(D1D2,E1) where
D2 = {({y | (x, p) ∈ X , f (x) = y},∑(x,p)∈X p) | X ∈ D1/ f }
E1 = ∗ f�{({u},{v}) | u = (x, p) ∈ D1,v = (y,q) ∈ D2, f (x) = y}

As in other operations, edges connect blocks in D1 with the
corresponding blocks in D2.

In the next section we develop theorems for rearranging,
merging, and introducing these operations to automatically
generate alternative but equivalent explanations.

4 Generating Alternative Explanations
One of the major contributions of this work is the abil-

ity to take a single explanation and automatically generate
many alternative explanations of the same problem. We
believe that by providing a navigable explanation object
with many explanation instances we can greatly increase ex-
planatory power compared to static images. In this section
we present and discuss a number of theorems for automati-
cally generating alternative explanations.

Many operations can be merged with adjacent operations
of the same type. We refer to this as operator fusion. For ex-
ample, the first three generators in the example in Figure 1
can be fused to form the generator in Figure 2.
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The composition of two operations is defined by joining
the resulting distribution graphs of each. This is captured in
the explanation semantics of composition below.

[[ f .g]] = λD1.(D(1..n),E(1..n−1))
where (D(1..k),E(1..k−1)) = [[ f ]]D1

(D(k..n),E(k..n−1)) = [[g]]Dk

Generator fusion, as demonstrated in Figure 2, follows di-
rectly from the definition of composition.

Theorem 1 Generator Fusion
λx.xD.λy.yD′ = λx.{(xy, pq) | (x, p) ∈ D,(y,q) ∈ D′}

Generator fusion reduces visual noise, allowing users to fo-
cus on more important and interesting parts of the explana-
tion. While it reduces the vertical complexity of the story
by reducing the number of steps, it increases the horizontal
complexity—the initial area is partitioned many more times
in a single step. Horizontal vs. vertical complexity is a re-
curring trade-off between alternative explanations.

Theorems for the fusion of other operators presented in
Section 3 are very straightforward. Adjacent maps can be
fused by simply composing their associated functions.

Theorem 2 Map Fusion
∗ f .∗g = ∗(g◦ f )

Adjacent filters can be fused by filtering with the conjunc-
tion of their predicates.

Theorem 3 Filter Fusion / Splitting
LpM. Lp′M = Lp∧ p′M

Theorem 3 defines two explanation transformations. Ap-
plied left-to-right it allows explanations to be shortened
through filter fusion, at the expense of a more complicated
filter predicate. Applied right-to-left it can yield a simpli-
fied explanation of a filtering process, by splitting it into two
operations, at the expense of an additional explanation step.

A similar dual transformation exists for groupings.

Theorem 4 Group Fusion / Splitting
. f ..g = .(g◦ f )

Another explanation transformation involves a process
called filter lifting which is demonstrated by an alternative
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explanation for the three-coins problem given in Figure 3.
If all descendants of some block are eliminated by a down-
stream filter, then we can introduce a filter immediately be-
low that block, filtering it out.

Theorem 5 Filter Lifting
If p(xy) =⇒ p′(x), then λx.xD. LpM = Lp′M.λx.xD. LpM

Often we want to transform an explanation to make the
effects of a particular part of the story more explicit. We
can do this by introducing a group-ungroup pair to isolate
the effects in a process called group bracketing. This is
demonstrated in Figure 4, where we have replaced the fil-
ter operation in Figure 1 with a group, filter, and ungroup.
In this example, the predicate of the original filter is used as
the grouping function, generating two groups; one passes
the filter and the other is removed. The ungrouping then
restores the underlying distribution.

Group bracketing is defined by the following theorem.

Theorem 6 Group Bracketing
If g does not contain a grouping or ungrouping operation,
then g = . f .g./

There are more laws that allow the lifting of group opera-
tions, and commutation of filters and groups with maps, but
we must omit these due to lack of space.

5 Related Work
In Section 2 we introduced our previous work in the do-

main of probability and probabilistic reasoning. Although
there are other languages which support the computation of
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probabilities, such as IBAL [10], there does not seem to be
any other work on explaining these computations. Domain-
specific explanation support is not completely new, how-
ever, and can be found in the field of algorithm anima-
tion [8], where the workings of computer algorithms are
explained with custom-made or (semi-)automatically gen-
erated animations [7]. The work of Blumenkrants et al.
is particularly relevant, where the use of the story-telling
metaphor was demonstrated to increase the explanatory
power of their algorithm animations [2].

Code debuggers represent a class of widely used expla-
nation systems. Very generally, the goal while debugging is
to obtain an explanation of some program behavior, usually
as part of an effort to fix some fault. While debuggers help
users find this information in the code (often after much
time and effort), most operate at such a low level that the
output and effects they produce could scarcely be consid-
ered an explanation. The WHYLINE system [9] inverts the
debugging process, allowing users to ask questions about
program behavior, and responding by pointing to parts of
the code responsible for the outcomes. Although this sys-
tem improves the process significantly, it can still only point
to places in the program, limiting its explanatory power. We
have extended this idea in the domain of spreadsheets by al-
lowing users to express expectations about the outcomes of
cells, then generating change suggestions that would pro-
duce the desired results [1].

Finally, our language is related to dataflow langauges, in
which data is incrementally modified by passing through
a directed graph of operations [6]. Our language could

be viewed as a dataflow language with the single complex
data type of probability distributions and the operations de-
scribed in Section 3. Each operation has a single distri-
bution as input and a single distribution as output, allow-
ing only the possibility of linear graphs. In [5] we discuss
branching operations which would make these probability
flow graphs somewhat more complex.

6 Conclusions and Future Work
This language continues our work in the area of

explanation-oriented programming and language design. A
primary contribution of this work is the formulation of laws
for deriving equivalent explanations of a particular problem.
In order to fully realize the potential of explorable explana-
tion objects, however, we need an algorithm for generating
alternatives, and heuristics for identifying those that will be
most useful. In future work we hope to generalize the no-
tation for modeling arbitrary explanations. We will also in-
vestigate the user-interface aspects of the language, which
would support the development of an end-user tool for ex-
ploring explanation objects.
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