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Abstract
In the context of software product lines, there is often a need to rep-
resent graphs containing variability. For example, extending tradi-
tional modeling techniques or program analyses to variational soft-
ware requires a corresponding notion of variational graphs. In this
paper, we introduce a general model of variational graphs and a
theoretical framework for discussing variational graph algorithms.
Specifically, we present an abstract syntax based on tagging for
succinctly representing variational graphs and other data types rel-
evant to variational graph algorithms, such as variational sets and
paths. We demonstrate how (non-variational) graph algorithms can
be generalized to operate on variational graphs, to accept varia-
tional inputs, and produce variational outputs. Finally, we discuss a
filtering operation on variational graphs and how this interacts with
variational graph algorithms.

Categories and Subject Descriptors D.2.9 [Software Engineer-
ing]: Management—Software configuration management; E.1
[Data Structures]: Graphs and networks

Keywords Choice calculus, variational data structures, variational
algorithms

1. Introduction
Graphs are a fundamental data structure in computer science and
are useful for representing and solving a huge range of problems.
In the context of feature-oriented software development [1] and
software product lines [28], graphs are used for a wide variety of
purposes. For example, graphs are used to describe the structure
and relationships of the components or features that make up a
system [15, 31] and to support separation of concerns [29]. Graphs
in the form of UML models [25] are used to support a broad range
of tasks related to the construction of component-based software
product lines [2, 16].

A major goal of all of these fields is to support the creation
and maintenance of variational software—that is, software that
represents not just a single program, but can be used to generate
many different program variants that provide different features and
run in different environments. Therefore, it is not surprising that
there is often a need to represent variation in these supporting graph
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representations. For example, many different extensions to UML
have been proposed for incorporating variability [8, 22, 24, 33].

The need for variation in graphs is perhaps most strongly ob-
served in the implementation of variability-aware analyses [21],
which are the extension of traditional single-program static analy-
ses to variational software. For example, extending traditional data-
flow or control-flow analyses to variational software leads to corre-
spondingly variational data-flow and control-flow graphs [4, 5].

Analogous to variational software, a variational graph repre-
sents not one, but many different plain graphs. Although many vari-
ational graph representations have been devised already, these have
all been adaptations of existing representations—situated solutions
that address a specific problem, with no shared underlying theory.
This paper attempts to fill this gap by presenting an abstract rep-
resentation of variational graphs and a theoretical framework for
discussing variational graph algorithms. Such an underlying the-
ory is useful since it supports the reuse of operations and theoretical
results between tools, problems, and fields.

In the following we establish a set of principles on which to base
an abstract representation of variational graphs and also outline the
rest of the paper.

(1) The model should provide a way to structure the variation
space to support the scalability of variation. This is typically done
through a feature model that can specify relationships between dif-
ferent decisions, such as dependency or mutual exclusiveness. It
should be possible in our model to express and precisely character-
ize such relationships. This principle is the focus of Section 2.

(2) It should provide a general model of variation that applies
not only to graphs, but to the values accepted and returned by
graph algorithms. This is necessary to support variational graph
queries. For example, variational path analysis relies not only on
variational graphs, but also on variational nodes (passed as inputs
to the path-finding algorithm), and variational paths (as ouptut).
Section 3 provides this model.

(3) It should suggest representations for variational data struc-
tures that take advantage of inherent sharing between alternatives.
For example, the paths computed by a variational path analysis
may have many nodes and edges in common. As the variability
in a structure increases, it becomes increasingly important to share
these common sub-parts due to a multiplicative explosion in the to-
tal number of variants. Sharing is also important for making sense
of variational output; for example, the differences between alterna-
tive paths are easier to see when they are overlaid on a single graph
than when examined separately. Tagged sets are introduced in Sec-
tion 4 as a specific data structure for efficiently representing varia-
tion in sets, and this representation is extended to tagged graphs in
Section 5. These representations realize the general variation model
from Section 3 for sets and graphs, respectively.

(4) It should provide a way to lift algorithms to the variational
setting to support the reuse of algorithms. In the case of graphs,
variational graph algorithms should accept variational input, oper-
ate on variational graphs, and produce variational output. For exam-



ple, we should be able to take a simple path-finding algorithm and
mechanically lift it to a variational algorithm that supports finding
variational paths. We show how to do this in general, in Section 6,
and also show how lifted graph algorithms can take advantage of
sharing in tagged graphs.

(5) Finally, it should provide a way to filter variational results.
For example, we wanted to be able to discard alternative paths
during the exploration process. We did this by making selections on
the input, restricting the variation in the output. This feature is also
important since a few independent sources of variation can lead to a
potentially huge number of variants. Filters provide a way to project
on variational output, in order to focus on and understand a related
subset of the variants at a time. In Section 7 we describe variational
filters, which provide a general way to project on variational values.

2. Dimensions and Decisions
In this section we describe how the variation space of a variational
type can be organized in terms of its dimensions of variation, and
how to identify particular points in this space by decisions. This
way of structuring variability is motivated in part by our previous
work on the choice calculus [10] (see Section 8).

A dimension describes one way in which something varies. A
dimension definition assigns a dimension name to a non-empty set
of tags, which correspond to the alternatives in that dimension. A
dimension definition is written as D = {t1, . . . ,tn}, where D is the
dimension’s name and t1, . . . ,tn are its tags. A qualified tag is a
tag prefixed by the name of the dimension it is in, written D.ti.
Qualified tags are used to distinguish between tags of the same
name from different dimensions. Given a qualified tag q = D.t, we
can extract the dimension name with the function dim(q) = D.

A decision space of degree n is given by a set of n dimension
definitions Dn = {D1 = T1, . . . ,Dn = Tn} where Ti is the set of tags in
dimension Di. We define the function dims(Dn) = {D1, . . . ,Dn} to
return the set of all dimension names in a decision space. The tag
universe of decision space Dn, written QDn , is the set of all qualified
tags in Dn, defined as QDn = {D.t ∣ D ∈ dims(Dn)∧ t ∈ D}.

A decision in a decision space Dn is a set of qualified tags
δ ⊆ QDn that contains at most one tag for each dimension, that is,
q,q′ ∈ δ Ô⇒ q = q′ ∨ dim(q) ≠ dim(q′). We overload the func-
tion dims to also denote the dimension names of a decision, that
is, dims(δ) = ⋃q∈δ dim(q). A decision δ ⊆ QDn is complete if it
contains a qualified tag from every dimension in Dn, that is, if
dims(δ) = dims(Dn), otherwise it is partial.

However, not all dimensions are independent of one another.
a decision structure D = (Dn,R) is given by a dimension space
Dn and a (potentially empty) set of dependency relationships R ⊆
2QDn ×Dn, where 2QDn is the power set of the tag universe for
Dn. Given a dependency relationship ({Di.t j, . . . ,Dk.tk},D′) ∈ R,
which we write also as Di.t j, . . . ,Dk.tl→D′, we say that D′ is a
dependent dimension and that D′ is dependent on the qualified tags
Di.t j, . . . ,Dk.tl . The tag universe of D is given by that of Dn, that
is, QD = QDn .

A decision structure refines the concept of decision complete-
ness given above, and it also gives rise to the idea of “overdeter-
mination” of a decision. The formal definitions are based on the
notions of decision covering and dimension triggering. First, we
say that a decision δ covers another decision δ

′ if δ
′ ⊆ δ . Second,

we say that a decision δ triggers the dimension D if it covers a
decision δ

′ for a dependency δ
′→D ∈ R.

With these two concepts we can define the completeness of
decisions with respect to a decision structure as follows. A decision
δ is complete if it contains a tag for each non-dependent dimension
and a tag for each dependent dimension that it triggers. Formally,
δ ⊆ QD is complete with respect to D if the following is true.

∀D ∈ dims(Dn)−dims(δ). ∀δ
′→D. δ

′ /⊆ δ

A decision structure can thus reduce the number of dimensions
required in a decision to be complete. The flip side of this aspect
is that dimensions in a decision can also become superfluous. We
say that a decision δ is overdetermined if δ contains a dependent
dimension D without containing the tags that D is dependent on.
Formally, δ is overdetermined with respect to a decision structure
D = (Dn,R) if the following is true.

∃D.t ∈ δ . δ
′→D∧δ

′ ⊈ δ

Note that the concepts of completeness and overdetermination
are independent of one another, that is, a partial as well as a
complete decision can be overdetermined. Since the semantics of
variational values will be defined to map to values only those
decisions that contain exactly the tags needed for selecting a value
and not more, we also identify the set of exact decisions, which are
decisions that are complete, but not overdetermined. To summarize,
a decision is:

• partial if it lacks tags to select a plain value;
• complete if it is not partial, that is, it has enough tags to select a

plain value;
• overdetermined if it contains tags that are not required to select

a plain value; and
• exact if it is complete but not overdetermined, that is, it contains

exactly the tags needed to select a plain value.
We write ∆D for the set of all exact decisions with respect to the
decision structure D .

3. Variational Values
A variational value represents several different plain values that
can be obtained by making different decisions. Given a set of
plain values A, a variational A value over a decision structure
D = (Dn,R) is a partial function of type VD(A) =∆D →A that maps
exact decisions to plain values in A. Given a variational value1 v⃗,
the function dom returns the decisions that can be made for v⃗ and
rng returns the variants contained in v⃗. A variational value may not
be defined for all decisions, and the set ∆D −dom(v⃗) contains all
the uncovered decisions of v⃗.

The process of obtaining a plain value from a variational value
v⃗ is called selection. A plain value is selected by applying v⃗ to an
exact decision.

In addition to selecting plain values, we can also refine varia-
tional values by applying them to partial decisions. The result of
refining a variational value is a new variational value that contains
fewer variants. The refinement of a variational value v⃗ with respect
to a partial decision δ is defined as a selection on the domain of v⃗.

v⃗!δ = {(δ
′−δ ,v) ∣ (δ

′,v) ∈ v⃗∧δ ⊆ δ
′}

Note that refinement with a complete decision δ will produce a
trivial function {(∅,v)} where v = v⃗(δ), and refinement with an
overdetermined decision will produce the empty set.

Note also that the refinement operation changes the type of the
variational value. Dimensions contained in δ are removed from
the decision space, as well as dependent dimensions that cannot
be triggered anymore. Moreover, triggered dependencies will be
removed, as well as dependencies whose antecedent tags contain
dimensions that are also contained in δ .

In cases of successive refinements, the order of refining does not
matter. This property is captured in the following lemma.

LEMMA 1. v⃗!δ !δ ′ = v⃗!δ ′!δ

1 We use arrows over variables that range over variational values to indicate
that these are functions.



4. Tagged and Variational Sets
The definition of variational values is completely generic in the
type of values that are being varied. While this is a useful feature
that provides a common semantic basis, it does not automatically
lead to succinct representations of non-atomic, structured values.
Specifically, variation in structured values can be local, and the
duplication of all non-varying parts in the semantic representation
of a variational value is not space efficient. It is also probably hard
to understand and work with in many cases.

Let us consider variational sets as a simple example of a struc-
tured value that illustrates the problem well. A solution to the rep-
resentation of variational sets also forms the basis for the represen-
tation of more complicated variational structures, such as graphs.

Given a set A = {a,b,c,d}, we consider the representation of
two variant A-sets S1 = {a,b,c} ∈ 2A and S2 = {a,b,d} ∈ 2A as a
variational A-set over the decision structure ({D = {t,u}},∅).

The variational semantics described in Section 3 yields the
following variational set.

S⃗ = {({D.t},{a,b,c}),({D.u},{a,b,d})}
We can observe the repeated representation of {a,b} in both vari-
ants. In this small example, this is not a problem, but if the set of
shared values gets large, say n, and if the number of variant sets
also grows, say to k, then this representation produces n(k−1) un-
necessary copies of the shared data.

A more economic representation that shares common parts
would be something like this.

S̄ = {a,b,cD.t ,dD.u}
This representation assumes that unlabeled values appear in all
variants of the set, whereas a value that is labeled by a qualified
tag appears only in those variants that are mapped to by decisions
containing that tag.

Labeling values with single tags is a bit limited and does not
exploit the full potential of this approach to sharing. For example,
we might want to express that a value is included only if two or
more tags (from different dimensions) are selected. This could be
expressed by a conjunction of tags, which allows the inclusion of
a value to be restricted to more specific cases. Similarly, we can
imagine cases where the same value is included only if one of
some number of different tags is selected. In this case, instead of
repeating the value for each tag, we could attach a corresponding
disjunction of tags and represent it only once.

These ideas are combined by the concept of tag expression over
a tag universe QD . Tag expressions are defined by the following
grammar (where q ranges over qualified tags drawn from QD ).2

e ∶∶= q ∣ e∧e ∣ e∨e

Additionally, we introduce a separate annotation ⋆ to label ele-
ments that are included in all variants. Now we can define a tagged
A set over a decision structure D as a mapping of type A→ e⋆ where
e⋆ represents the set of tag expressions that can be generated by the
above grammar based on D’s tag universe QD , extended by the el-
ement ⋆. We write S̄ for a variable representing a tagged set and
τD(A) for the type of tagged A sets over D . Moreover, as indicated
above, we write elements (v,e) ∈ S̄ of the tagged set S̄ using expo-
nent notation, that is, as ve, and we typically omit the ⋆ exponent
and simply write v for v⋆.

The purpose of tagged A sets is to provide an economical syn-
tax for variational A sets. In the following we therefore define the
semantics of this notation and explain what variational set is de-
noted by a tagged set. First, using a simple qualified tag vq means

2 It is possible to extend tag expressions also by “negated tags”, that is, tags
whose selection will exclude elements, but we omit these here for brevity.

to include v in the set only if the tag q is selected. Conversely, an
element v⋆ is included for any selection. Second, the meaning of a
conjunction of tags ve1∧e2 is that v is included for a selection that
would cause ve1 and ve2 to be included. Dually, a disjunction of tags
ve1∨e2 causes v to be included for selections that would cause ve1 or
ve2 to be included.

We can define the semantics of tagged sets in two steps by first
mapping single tag elements into variational sets and then combin-
ing those sets. Since variational sets are represented by functions,
the combination of those functions requires a careful distinction of
what to do for overlapping and non-overlapping decisions in the
sets to be combined. Specifically, we can consider the two cases
of computing the union and intersection of functions. The varia-
tional union of two variational sets S⃗ and S⃗′ takes the union of
the non-overlapping parts of S⃗ and S⃗′ and computes the union of
the sets mapped to by the overlapping parts. Conversely, the vari-
ational intersection of S⃗ and S⃗′ takes only the intersection of the
sets mapped to by the overlapping parts of S⃗ and S⃗′ and drops the
non-overlapping parts.

To define these operations formally we introduce an auxiliary
function ' that decomposes two functions into their overlapping
and non-overlapping parts. The result of S⃗ ' S⃗′ is a triple of sets,
where the first and third sets capture the non-overlapping parts of S⃗
and S⃗′, respectively, and the second captures the overlapping parts.

S⃗ ' S⃗′ = ({(δ , S⃗(δ)) ∣ δ ∈ dom(S⃗)−dom(S⃗′)},
{(δ , S⃗(δ), S⃗′(δ)) ∣ δ ∈ dom(S⃗)∩dom(S⃗′)},
{(δ , S⃗′(δ)) ∣ δ ∈ dom(S⃗′)−dom(S⃗)})

With this auxiliary function we define variational union as follows.

S⃗ ∪⃗ S⃗′ = L∪{(δ ,ML∪MR) ∣ (δ ,ML,MR) ∈ M}∪R

where (L,M,R) = S⃗ ' S⃗′

In our example we can use S⃗1 = {({D.t},{a,b,c})} and S⃗2 =
{({D.u},{a,b,d})}, and we find that S⃗1 ∪⃗ S⃗2 yields S⃗ since S⃗1 ' S⃗2
yields L = S⃗1, R = S⃗2, and M = ∅.

In a similar way we can define variational intersection using the
auxiliary decomposition function.

S⃗ ∩⃗ S⃗′ = {(δ ,ML∩MR) ∣ (δ ,ML,MR) ∈ M}
where (L,M,R) = S⃗ ' S⃗′

In our example, S⃗1 ∩⃗ S⃗2 yields ∅.
Now we can define the semantics of tagged values. First, we

define the semantics of ⋆ tagged values and singly tagged values.
Then we use the union and intersection operations to define the se-
mantics of values that are tagged by disjunctions and conjunctions
of tags, respectively.

Jv⋆KD = {(δ ,{v}) ∣ δ ∈ ∆D}
JvqKD = {(δ ,{v}) ∣ δ ∈ ∆D ∧q ∈ δ}

Jve1∧e2KD = Jve1KD ∩⃗ Jve2KD

Jve1∨e2KD = Jve1KD ∪⃗ Jve2KD

Finally, we can again use the variational union operation to define
the semantics of tagged sets below. The type of the semantic func-
tion is J⋅KD ∶ τD(A) →VD(2A).

JS̄KD = ⋃⃗ve∈S̄JveKD

Note that the decision structure determines the domain of the se-
mantics. Thus, one tagged value or set will generally have different
semantics under different decision structures. Specifically, an ele-
ment in a tagged set will materialize as a plain element in the range
of the semantics only if its tag expression respects the dependencies



in the decision structure. An example of this effect can be seen in
the graph example shown in Figure 1(a) (explained in more depth in
the next section). The edge (3,1) that is tagged A.t ∧B.r would not
appear in any plain graph if the dependency was instead {A.u}→B.

We observe that the semantics for tagged values and sets are
well defined in the sense that the definition always produces vari-
ational values whose domain respects the decision structure. Con-
sider as an example the tagged set {vD.t∧D.u}. We expect the cor-
responding variational set to be empty since v cannot appear in a
decision that contains both D.t and D.u since the two tags belong
to the same dimension. We can verify our expectation by comput-
ing the semantics, which, as expected, produces the empty set.

J{vD.t∧D.u}KD = JvD.t∧D.uKD = JvD.tKD ∩⃗ JvD.uKD

= {({D.t},{v})} ∩⃗ {({D.u},{v})} = ∅
Finally note that the function representation requires that in a
tagged set each element can occur at most once. Thus in order to
represent an element in different alternatives one must combine the
corresponding tags with a disjunction.

Tagged and variational sets provide the basis for the succinct
representation of a wide range of variational data structures, and
thus support the two principles of generality and sharing.

5. Tagged and Variational Graphs
A representation for variational graphs that is flexible, allows the
exploitation of sharing, and lends itself to succinct visualizations,
is obtained by drawing a “supergraph” of all graph variants and
labeling nodes, edges, and labels with tags to express the variational
parts. This supergraph representation strategy is in principle an
instance of the approach that we have already employed in the
representation of variational sets using tagged sets.

Before we can define tagged graphs, however, we have to decide
on a definition of (plain) directed, labeled graphs to work with.
We can obtain a succinct representation when we combine the set
of vertices and edges with their respective labeling functions. We
therefore represent a directed, node- and edge-labeled graph by
a pair of mappings (N,E) where N ∶ V → L and E ∶ V ×V → L
represent the sets of labeled vertices and edges, respectively, and
where V and L are sets that provide universes of node and label
values, respectively. Such a graph is said to be well defined if edges
connect only existing nodes, that is, (v,w) ∈ dom(E) Ô⇒ {v,w} ⊆
dom(N).

Following the definition in Section 4 we now define a tagged
graph over a decision structure D as a pair of mappings (N̄, Ē)
where the supergraph (N,E), obtained by N = rng(N̄) and E =
rng(Ē), is a directed graph. An example is shown in Figure 1(a).
To simplify the following discussion, we use, without loss of gen-
erality, an unlabeled graph.

The definition of the semantics of a tagged graph can be based
on the semantics of tagged sets. Since labeled nodes and edges
are functions (and thus sets), their variational versions represented
as tagged functions/sets is directly amenable to the semantics of
tagged sets as defined in Section 4. However, this is not all there
is to do. The two resulting variational sets must still be combined
into a variational graph; that is, we have to transform an element of
type (VD(2N),VD(2E)) into one of type VD(2N×E). This requires
some care since the tag structures of nodes and edges are prin-
cipally independent of one another; that is, the variational nodes
(VD(2N)) and variational edges (VD(2E)) that result form the se-
mantics are not guaranteed to be synchronized. For example, there
may be variants corresponding to specific decisions in one that are
missing in the other.

This problem can be avoided by taking decisions only from
the intersection of the domains of both variational sets, an idea

A.u ∨ B.r
A.t ∧ B.r

A.u ∨ B.r

A.t ∧ B.s

A.t

1

2
3

(a) Ḡ

1

2
3

(b) G⃗({A.u})

1

2
3

(c) G⃗({A.t,B.r})

2
3

(d) G⃗({A.t,B.s})

Figure 1. A tagged (unlabeled) graph Ḡ over the decision structure
({A = {t,u}, B = {r,s}},{({A.t},B)}) and its variants.

captured in the following definition of the semantics.

J(N̄, Ē)KD ={(δ ,(N⃗(δ), E⃗(δ))) ∣ δ ∈ dom(N⃗)∩dom(E⃗)}
where N⃗ = JN̄KD and E⃗ = JĒKD

As an example, consider the tagged graph Ḡ shown in Figure 1(a).
Its semantics JḠKD is shown in Figures 1(b) - (d).

Even though the semantics definition ensures that each decision
leads to two sets of labeled nodes and edges, it is not guaranteed
that any such graph is itself well defined. Consider, for example,
the following tagged graph Ḡ = (N̄, Ē) with N̄ = {(v, l)t ,(w,k)u}
and Ē = {((v,w),m)⋆}. We assume the simple decision structure
(D = {t,u},∅), and since we have only one dimension, we use
unqualified tags for brevity. The semantics of the tagged node and
edge label functions are as follows.

N⃗ = {({t},{(v, l)}),({u},(w,k))}
E⃗ = {({t},{((v,w),m)}),({u},{((v,w),m)})}

The semantics of Ḡ is thus the following function (note that
dom(N⃗) = dom(E⃗) = {{t},{u}}).

G⃗ = JḠKD = {({t},({(v, l)},{((v,w),m)})),
({u},({(w,k)},{((v,w),m)}))}

Now we can see that neither G⃗({t}) nor G⃗({u}) is well de-
fined. For example, in the graph (N,E) = G⃗({t}), we observe that
((v,w),m) ∈ E and while (v,w) ∈ dom(E), it is not the case that
{v,w} ⊆ dom(N) = {v}. (The situation is similar for G⃗({u}) which
contains the same edge but only the node w.)

Similarly, consider what happens when we change the tag ex-
pression of node 1 in Figure 1(a) from A.u∨B.r to just B.r. Then
the graph generated by the decision {A.u} is not well-defined since
it includes the edge (1,2) but not the node 1.

To ensure that the graph variants denoted by tagged graphs
are well defined, we will add a condition that the tags of nodes
must include the decisions of their incident edges. To this end,
in Figure 5, we define a “subsumes” relationship e ⊑ e′ on tag
expressions that holds if e is more inclusive with respect to the
decisions it denotes than e′. A crucial property of ⊑ is expressed in
the following lemma that holds for arbitrary values v1 and v2.



⋆ ⊑ e e ⊑ e
e ⊑ e1 e ⊑ e2

e ⊑ e1∨e2

e1 ⊑ e e2 ⊑ e
e1∧e2 ⊑ e

e ⊑ e1

e ⊑ e1∧e2

e ⊑ e2

e ⊑ e1∧e2

e1 ⊑ e
e1∨e2 ⊑ e

e2 ⊑ e
e1∨e2 ⊑ e

Figure 2. Subsumes relationship on tag expressions.

LEMMA 2. e2 ⊑ e1 Ô⇒ ∀v1,v2. dom(Jve1
1 KD) ⊆ dom(Jve2

2 KD)

This property allows us to formulate the following theorem that
places a generality condition on node tags, ensuring that nodes will
be included in all decisions that produce incident edges.

THEOREM 1. If ∀((v,w),e) ∈ Ē ∶ N̄(v) ⊑ e∧ N̄(w) ⊑ e, then ∀G ∈
rng(J(N̄, Ē)KD) ∶G is well defined.

We can apply this theorem to the graph Ḡ shown in Figure 1(a).
Only node 1 is not tagged ⋆ and needs to be considered. Due to
the reflexivity of ⊑, we have N̄(1) ⊑ Ē(1,2), and N̄(1) ⊑ Ē(3,1)
holds since B.r ⊑ B.r implies B.r ⊑ A.t ∧B.r, which in turn implies
A.u∨B.r ⊑ A.t ∧B.r. We can then observe that indeed all graph
variants in Figure 1(b) - (d) are well defined.

Note, however, that the condition in the theorem is an approxi-
mation, that is, there are tagged graphs that do not satisfy the con-
dition but are still well formed.

Tagged graphs directly support the third design principle that
we identified in Section 1 since they offer a succinct representation
for variational graphs that exploits sharing.

6. Variational Graph Algorithms
Since the V type constructor (see Section 3) is a functor [27], it
can automatically lift any function f of type A→ B to a variational
function f⃗ of type V(A) →V(B). We can provide the definition of
f⃗ using a plain set comprehension that iterates over all decisions in
the variational domain of the function.

f⃗ = {(δ , f (a)) ∣ (δ ,a) ∈V(A)}
However, this is generally not a very efficient method for comput-
ing f⃗ since it does not exploit any potential sharing among the dif-
ferent alternatives of values in V(A).3

What we would like to do instead is lift f based on a more
economical representation, such as the one provided by tagging,
which can exploit the sharing in the representation. In other words,
we would like to find a definition for f̄ that is correct with respect
to f⃗ . We will illustrate this process with a simple example.

Consider the following function path for finding all directed
paths between two nodes (in some given graph G). Here [] denotes
an empty path, and v ∶ p puts the node v at the beginning of the path
p, but only if p doesn’t already contain v, to avoid cycles.

path(v,v) = {[]}
path(v,w) = {v ∶ p ∣ p ∈ path(u,w)∧(v,u, l) ∈ E}

To generalize this function to work on tagged graphs, we simply
copy tag expressions from traversed edges to the nodes that are
reached via those edges in the constructed paths. In the constructed
paths we use the conjunction of the edge tag and the tag of the target

3 Note, however, that we can always compute f⃗ lazily, that is, only when
f⃗ is applied to some decision δ will we actually compute f for the value
A(δ). We can then also memoize the result.

node to find only paths that satisfy both tag constraints.
¯path(v,v) = {[]}
¯path(v,w) = {v ∶ue∧N̄(u) ∶ p ∣ u ∶ p ∈ ¯path(u,w)∧((v,u, l),e) ∈ Ē}

For the tagged graph Ḡ in Figure 1, ¯path computes one tagged path
between nodes 1 and 2, namely [1,2A.u∨B.r], and the following two
paths between nodes 3 and 2.

¯path(3,2) = {[3,1(A.t∧B.r)∧(A.u∨B.r),2A.u∨B.r],[3,2A.t]}
To judge the correctness of the algorithm, we need a semantics for
tagged paths, which is given by variational paths, that is, by func-
tions from decisions to plain paths. For the semantics of a tagged
path p̄ computed in a tagged graph Ḡ the following consistency
criterion must hold.

∀(δ , p) ∈ Jp̄KD . p is a path in JḠKD(δ)
To ensure this property we gather the tags of all nodes in p̄ and
form a conjunction of all of them, effectively computing the most
restrictive tag from all tags, written as ⋀(v,e)∈p̄ e. We attach this tag
to the plain path p, which is obtained from p̄ by removing the tags
from all nodes, and then apply the standard semantics for tagged
values.

J p̄KD = Jp⋀(v,e)∈ p̄ eKD

With this definition we can now define the semantics of the tagged
path algorithm as follows.

J ¯path(v,w)KD = ⋃⃗ p̄∈ ¯path(v,w)J p̄KD

As an example, consider the computation of J ¯path(3,2)KD . Given
p̄ = [3,1(A.t∧B.r)∧(A.u∨B.r),2A.u∨B.r], we obtain p = [3,1,2] as the
plain path and ((A.t ∧B.r)∧(A.u∨B.r))∧(A.u∨B.r) for its aggre-
gated tag, which can be simplified to e = (A.t ∧B.r)∧(A.u∨B.r).
Now we can compute Jp̄KD as follows.

Jp̄KD = JpeKD

= JpA.t∧B.rKD ∩⃗ JpA.u∨B.rKD

= JpA.tKD ∩⃗ JpB.rKD ∩⃗ (JpA.uKD ∪⃗ JpB.rKD)
= {({A.t,B.r},{p}),({A.t,B.s},{p})} ∩⃗ {({A.t,B.r},{p})}
∩⃗ ({({A.u},{p})} ∪⃗ {({A.t,B.r},{p})})

= {({A.t,B.r},{p})} by definition of ∩⃗
∩⃗ {({A.u},{p}),({A.t,B.r},{p})} by definition of ∪⃗

= {({A.t,B.r},{p})} by definition of '

This complicated computation can be simplified significantly if we
first simplify the tag expression e as follows.

e = (A.t ∧B.r)∧(A.u∨B.r)
= A.t ∧B.r∧A.u∨A.t ∧B.r∧B.r distributivity
= A.t ∧B.r∧B.r A.t ∧A.u = false
= A.t ∧B.r absorption

Note that the tag expression A.t ∧B.r∧A.u is unsatisfiable because
it needs both tags A.t and A.u, whereas we can choose at most one
tag from each dimension. Thus, this expression can be viewed as
the zero identity to the connective ∨.

With the simplified tag expression, the semantics of JpA.t∧B.rKD

can be easily computed. Similarly, given p̄ = [3,2A.t] and thus
p = [3,2] we obtain J p̄KD = {({A.t,B.r},{p}),({A.t,B.s},{p})}.
We can put these two results together and obtain the following.

J ¯path(3,2)KD = {({A.t,B.r},{[3,1,2],[3,2]}),
({A.t,B.s},{[3,2]})}



The semantics tell us that when the tags A.t and B.r are chosen, the
resulting graph will have two different paths from node 3 to node 1,
namely the paths [3,1,2] and [3,2]. The correctness can be easily
verified against Figure 1(c). Similarly, when A.t and B.s are chosen,
the resulting graph has one path [3,2], which can again be verified
against Figure 1(c).

The correctness of the algorithm ¯path is expressed in the fol-
lowing lemma where ⃗path gives the “semantic standard” by lifting
the path function to the variational case.

LEMMA 3. J ¯path(v,w)KD = ⃗path(v,w)
Just like path, the algorithm ¯path traverses the graph only once

and is thus in general more efficient than the variational version
⃗path. The expansion of tagged paths into a set of paths does cause

some additional effort, but the efficiency gains are obvious in cases
where one sub(path) occurs in n variants. The brute-force algorithm
⃗path will compute that path n times, whereas ¯path does this only

once. However, the efficiency gain of ¯path over ⃗path depends on
the graph structure. For a given tagged graph Ḡ, the efficiency gain
is significant if there is a lot of sharing among different variants.

Lemma 3, together with all of its efficiency benefits, extends
naturally to many other graph algorithms. This result is important
since it supports our fourth principle from Section 1 by providing a
general roadmap to extend algorithms employed in graph applica-
tions to the variational case, along with their graph representations.

7. Variational Filters
Variational graphs, and variational values in general, are binary re-
lations between decisions and plain values. Filters on variational
graphs can therefore be conveniently expressed by pairs of predi-
cates on the domain and range of these relations. We have already
encountered refinement in Section 3 as an example of one such
query operation. Refinement was basically a selection on a rela-
tion’s domain. Similarly, we can envision selection on the range.

In general, given a variational value v⃗ of type VD(A), a VD(A)-
filter on v⃗ is a given by a pair of predicates φ = ⟨α,β ⟩ where
α ∶ ∆D → B and β ∶ A→ B represent the domain and range predi-
cates, respectively. We call α the decision predicate and β the value
predicate. The semantics of a filter is the transformation of a varia-
tional value obtained by applying the decision and value predicates
to the two respective parts of the relation representing the varia-
tional value. Since the filtering step might leave redundant frag-
ments in the decisions—that is, qualified tags that occur in every
entry—those parts are removed from the decisions of the resulting
relation.

J⟨α,β ⟩KD(v⃗) = {(δ −K,v) ∣ (δ ,v) ∈ R}
where R = {(δ ,v) ∈ v⃗ ∣ α(δ)∧β(v)}

K =⋂δ∈dom(R)δ

With the “accept everything” predicate ι = λx.true that always
returns true, we can identify some special cases of filters. For
example, refinement with a decision δ (defined earlier in Section 3)
is given by the filter ⟨λx.x= δ , ι⟩. Refinement corresponds to partial
decision making. The dual operation, which restricts a variational
value by a predicate β on values is given by ⟨ι ,β ⟩.

From the semantics definition of filters it follows directly that
the composition of filters can be performed component-wise, that
is, by forming conjunctions of the decision and value predicates.
(In the following definition, we lift conjunction from values to
predicates, that is, we write more shortly α ∧α

′ for the expression
λx.α(x)∧β(x).)

LEMMA 4. ⟨α,β ⟩○ ⟨α ′,β ′⟩ = ⟨α ∧α
′,β ∧β

′⟩

Since lifted variation computations do not change the domain of
variational values, that is, dom( f⃗ (v⃗)) = dom(v⃗), they are unaffected
by changes to the decisions in variational values and thus commute
with decision refinements, a result summarized in Lemma 5.

LEMMA 5. ⟨α, ι⟩○ f⃗ = f⃗ ○⟨α, ι⟩
The importance of this lemma lies in the fact that, when applied
from left to right, it can save potentially costly computations of f
for all those decisions that are eliminated by α .

Commuting a filter with a non-trivial value predicate and a
transformation is generally much more difficult, and for lack of
space we will not explore this aspect here in detail. Instead we
provide some preliminary results.

If we apply a filter after a transformation, as in ⟨α,β ⟩ ○ f⃗ , the
predicate β ∶B→B will generally reduce the set of values produced
by the transformation f⃗ ∶ A → B. Therefore, in order to apply β

before f , we have to apply a modified version of it that excludes
only those A values whose image under f would be excluded by
β , that is, we need a predicate β f ∶ A→ B that has the following
property.

¬β f (a)⇔¬β( f (a))
We call such a predicate the f -prefilter for β . Having such a
predicate available, we can move the filter as follows. Since the
value predicate is not needed anymore, we can remove the whole
filter following f .

LEMMA 6. ⟨ι ,β ⟩○ f⃗ = f⃗ ○⟨ι ,β f ⟩
This lemma is probably not very useful in practice since it is gener-
ally difficult to construct a prefilter. A more promising approach for
exploiting knowledge about the presence of post-algorithmic filters
is to integrate the filter into the algorithm itself. Unfortunately, this
is not a general solution and requires much effort. In many cases,
a better approach is to apply an algorithm that modifies the plain
values directly instead of applying a filter. For example, if f⃗ is a
shortest path algorithm and β requires that certain nodes not be in
the resulting paths, it is generally not possible to achieve this by
removing some graphs from v⃗ altogether. However, removing the
nodes from the graph would cause the shortest path algorithm to
produce the desired results.

As a corollary of Lemmas 5 and 6 we obtain the following
result.

THEOREM 2. ⟨α,β ⟩○ f⃗ = f⃗ ○⟨α,β f ⟩
As already mentioned, the construction of prefilters is a difficult
problem. Therefore, Lemma 5 will probably be applicable more
often and thus be more relevant.

On the other hand, we observe that we can always at least par-
tially commute a filter with an algorithm by employing Lemma 4,
a result captured in the following theorem.

THEOREM 3. ⟨α,β ⟩○ f⃗ = ⟨ι ,β ⟩○ f⃗ ○⟨α, ι⟩
This result reveals a general strategy for evaluating queries in a
variational setting, namely to first apply refinements, then run the
algorithm, and finally apply value filters. The fact that variational
filters are open to optimization, as illustrated by the lemmas and
theorem, support the fifth principle we identified in Section 1.

8. Related Work
The feature-oriented software development (FOSD) [1] and soft-
ware product line (SPL) [28] communities are intimately concerned
with creating and managing variational software. Since the con-
struction of plain software is often supported by various graph rep-
resentations, there is a need to represent variation in these support-
ing graph representations as well. There are many examples of such



adaptations already, which will be described in this section. Com-
pared to the model presented in this paper, these variational graph
representations are in some sense domain-specific, adapting spe-
cific object languages in order to solve a particular problem.

An important distinction to make, however, is between graph
representations that contain variability and graph representations
that describe variability. In FOSD terms, the first is related to the
problem of feature implementation while the second is related to
the problem of feature modeling [20].

Feature diagrams [18] are a common notation for feature mod-
eling. Although feature diagrams are typically described as trees,
they are actually directed graphs when cross-tree constraints are
taken into account [30]. However, a feature diagram does not it-
self contain variation—instead it describes the high-level structure
of the variation in some other artifact, typically a software system.
In this way, feature diagrams are more similar to our dimensions
of variation and decisions structures (Section 2) than to variational
graphs. In terms of expressiveness, many feature diagram notations
are functionally complete, making them more expressive than our
decision structure representation. Our decisions structures provide
only implications and disjunctions of implications, which are not
by themselves functionally complete [32]. Our representation of
decisions structures would be complete if extended by a negation
operation. Feature diagrams are equivalent to many other represen-
tations of feature models, such as propositional formulas [3].

On the other hand, the tagged graph representation (Section 5)
contains variation—by making selections we can generate many
different plain graph variants. Similarly, to support efficient model
checking of SPLs, Classen et al. [6, 7] extend the directed graph
notation of transition systems with a way to tag edges that cor-
respond only to certain features in a SPL, which may be optional.
They call this representation featured transition systems (FTS). The
FTS notation resembles our tagged graphs, although there are sev-
eral important differences. First, the role of decision structures in
tagged graphs is played in FTS by an associated feature diagram.
Each node in the feature diagram corresponds to a potential tag in
FTS. Second, tagged graphs support a more flexible and precise
form of variation than FTS. In FTS, each edge can be associated
with only a single tag, and nodes are not variational at all. Tagged
graphs associate tag expressions (Section 4) with both nodes and
edges. Finally, to overcome the limitations of tagging in FTS, a no-
tion of edge priority is introduced, where some edges, if present,
supersede and remove other edges. Although this solution sup-
ported their variational model-checking algorithm, it is rather ad
hoc and demonstrates the need for a consistent, general model for
variational graphs. A similar but less expressive representation was
introduced by Lauenroth et al. [19], also in the context of model
checking product lines. Compared to FTS, this representation al-
lows only simple tags on edges rather than boolean expressions.
Like FTS, but unlike tagged graphs, nodes cannot be varied.

Relatedly, Fischbein et al. [14] describe how the graph-based
representation of modal transition systems (MTS) [17] can be used
to model variational behaviors in software product lines. However,
compared to FTS and our tagged graph representation, the variabil-
ity in these systems is quite unstructured since there is no corre-
sponding feature model or decision structure. In other words, all
variational transitions are considered independent of one another.
This means that, in general, the MTS encoding of a SPL contains
many more variants than the SPL. Fantechi and Gnesi [12, 13]
extend MTS with new variation operators that allow many kinds
of sophisticated cardinality-based constraints on variational transi-
tions, such as, at least k of a set of n transitions must be included.
However, it still does not provide a general mechanism for syn-
chronizing variational transitions in different parts of a MTS. Fi-
nally, Muschevici et al. [23] extended petri nets with variational

constructs. An interesting aspect of their approach is that it allows
the elimination of variability through the execution of petri nets.

Multiple researchers have extended UML class diagrams and
sequence diagrams to incorporate variability [22, 24, 33]. These
extensions again resemble our tagged graph representation, except
that only nodes are tagged. Also, the set of available tags is fixed
and not determined by an associated decision structure (or feature
diagram, as in Classen et al.). For example, optional class nodes can
be tagged directly as optional. A class tagged with the variation
tag denotes a variation point, whose alternatives are denoted with
variant tags. Constraints between different variation points and
optional classes, such as mutual requirement and exclusion, can be
expressed using the Object Constraint Language of UML [25].

The Common Variability Language (CVL) by the Object Man-
agement Group (OMG) is an ongoing effort to standardize the rep-
resentation of variation in model-based engineering [26]. The over-
arching goal of CVL is to achieve orthogonality [28] with respect
to the domain and language of the underlying model. To this end,
CVL adds variability modeling constructs to any modeling lan-
guage based on OMG standards. CVL consists of several different
kinds of models. A variability model is linked to nodes and edges
in the underlying base model. The links denote potential actions to
modify the base model. The modifications are controlled by a vari-
ability specification tree, which is similar to a feature model. An
individual configuration is given by a so-called resolution model,
which describes the modifications to be applied to the base model,
resulting in a resolved model. Compared to CVL, the representa-
tions proposed in this paper are simpler and more abstract. While
variational graphs and tagged graphs offer a straightforward and
systematic approach to formulate variational graph algorithms, it is
not clear how to achieve this with CVL.

Czarnecki and Antkiewicz present another approach to add vari-
ability to modeling languages in an othogonal way [8]. Their ap-
proach associates presence conditions with model elements, simi-
lar to tagged graphs. When generating graph variants, the elements
whose presence conditions evaluate to false are removed. Unlike
tagged graphs, presence conditions are externally associated with
nodes (addressing them via XPath), so the variation structure is not
apparent when looking at the graph itself.

Brabrand et al. [5] describe several different ways of adapt-
ing existing static data-flow and control-flow analyses to varia-
tional software. This is supported by extending the representation
of data/control-flow graphs with an inclusion condition associated
with each node, describing under which configurations the node is
present in the graph. This is similar to our own tagged graph rep-
resentation except that only nodes are variational, not edges. Addi-
tionally, it is assumed that if nodes A and C are connected through
node B, A and C will still be connected even if B is excluded. An
alternative approach to lifting flow-based analyses to SPLs is de-
scribed by Bodden et al. [4]. In this approach, the data/control-flow
graphs are computed in the usual way, then supplemented by con-
ditional edges. While this representation has some benefits over
the representation used by Brabrand et al., the result does not re-
ally represent a variational data/control-flow graph in the sense de-
scribed in this paper since it is not possible to generate variant flow
graphs corresponding to each product of the SPL.

In our own previous work on the choice calculus [10], we have
developed a formal variation representation that offers many alge-
braic laws to support the flexible transformations of variation repre-
sentations. Additionally, we have introduced the idea of variational
data structures, and described how to extend algebraic data types
with choice calculus-based variation [11]. One difference between
the choice calculus and this work is that dimensions of variation
can be locally scoped in the choice calculus, while they are glob-
ally defined in the decision structure corresponding to a variational



graph. Even more importantly, the choice calculus operates on tree-
structured data (such as a program’s abstract syntax tree), and is
therefore not directly applicable to graphs. However, it could be ap-
plied to an inductive representation of graphs by an algebraic data
type [9].

9. Conclusions and Future Work
We have introduced a model of variational graphs that can serve
as a formal foundation for extending graph-based applications with
variation. The ability to consider different versions of graph data
side by side, to structure these versions systematically, and observe
the corresponding variation in the results opens many exciting
opportunities in these areas. The variational graph model can serve
as a framework for systematically introducing variation into graph-
based applications.

We have also identified tagged graphs as a succinct syntactic
representation for variational graphs and demonstrated how this
may provide an efficient representation for variational graph algo-
rithms. However, we have barely scratched the surface of this area.
The question of finding efficient variational and tagged graph algo-
rithms for all kinds of graph problems is a wide open research field
that can be the subject of future research efforts.
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