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Abstract  

This  discussion  paper  presents  a  conversation  between  researchers  having  active  interests  in  the  usability               
of  probabilistic  programming  languages  (PPLs),  but  coming  from  a  wide  range  of  technical  and  research                
perspectives.  Although  PPL  development  is  currently  a  vigorous  and  active  research  field,  there  has  been                
very  little  attention  to  date  to  basic  questions  in  the  psychology  of  programming.  Relevant  issues  include                 
mental  models  associated  with  Bayesian  probability,  end-user  applications  of  PPLs,  the  potential  for              
data-first  interaction  styles,  visualisation  or  explanation  of  model  structure  and  solver  behaviour,  and              
many   others.  

Introduction  

This  discussion  has  been  convened  to  consider  open  research  questions,  priorities  and  potential  design               
guidelines  relevant  to  the  usability  of  probabilistic  programming  languages  (PPLs).  It  provides  a  short               
introduction,  for  the  PPIG  audience,  to  the  conceptual  and  operational  principles  that  underlie  PPLs.  It                
then  discusses  two  alternative  perspectives:  firstly  an  applications  perspective,  in  which  there  might  be               
potential  for  broader  application  of  PPL  methods  in  the  context  of  end-user  programming  if  the  languages                 
were  usable  by  a  wider  range  of  people;  and  secondly  an  educational  perspective,  in  which  we  consider                  
whether  PPLs  might  be  a  valuable  tool  for  teaching  principles  of  probability,  or  even  as  an  introduction  to                   
programming  that  takes  a  fundamentally  probabilistic  rather  than  deterministic  or  imperative  view  of  how               
computation  should  be  conceived.  Finally,  an  agenda  is  suggested  for  a  “furthest-first”  approach  to               
education   and   applications.  
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Background   and   History  

Probabilistic  programming  is  a  paradigm,  generally  embedded  within  conventional  languages,  in  which             
programmers  can  define  random  variables  and  perform  probabilistic  inference  using  high-level  language             
constructs.  Note  that  the  phrase  ‘probabilistic  programming’  does not  refer  to  the  application  of               
probabilistic  methods  in  program  synthesis,  or  in  programming  by  example,  which  are  also  topics  of                
interest  at  PPIG,  but  are  not  the  subject  of  this  paper.  Typical  random  variables  might  be  a  sample  data                    
set,  observable  system  output,  model  parameters,  or  other  latent  variables,  usually  understood  within  a               
framework  of  generative  modeling  and  Bayesian  inference  (Kim  &  Pearl  1983,  Pearl  &  Mackenzie  2018).                
A  key  distinction  between  probabilistic  and  conventional  programming  languages  is  that  random             
variables  do  not  have  a  single  value,  but  should  be  regarded  as  defining  (or  sampling  from)  a  probability                   
distribution  of  likely  values.  Performing  inference  amounts  to  finding  probable  values  for  some  of  these                
variables  given  the  values  of  other  variables,  e.g.  inferring  the  parameters  of  a  model  given  observed  data.                  
Popular  inference  algorithms  include  Markov  chain  Monte  Carlo  (MCMC)  (Wingate  2011)  and             
variational   inference   (Blei   2017).  

Probabilistic  programming  can  have  a  ̀ `declarative"  flavor:  probabilistic  languages  typically  separate  the             
executable  code  that  defines  a  probabilistic  model  from  the  inference  algorithm(s)  that  are  actually               
invoked  to  find  probable  values.  In  this  sense,  probabilistic  programming  might  be  compared  to               
embeddings  of  logic  programming  in  conventional  languages,  in  which  declarative  operations  can  be              
mixed  with  ordinary  constructs  for  I/O,  etc.  However,  expert  probabilistic  programmers  may  have  to  read                
a  probabilistic  model  imperatively,  using  their  understanding  of  the  underlying  inference  algorithm  to              
diagnose  inference  failures  and  to  try  to  improve  inference  performance.  This  breaks  the  illusion  of                
declarative  behavior,  analogously  to  the  need  for  expert  Prolog  programmers  to  understand  backtracking              
search.  Additional  technical  discussion  about  distinctions  between  familiar  declarative  languages  and  the             
generative   nature   of   probabilistic   programming   is   reported   in   an   appendix.  

There  exist  a  number  of  different  approaches  to  probabilistic  programming  that  are  built  around  a  variety                 
of  semantics  and  inference  engines.  One  important  class  of  languages  are  those  that  only  allow  random                 
choices  in  restricted  positions,  ensuring  that  programs  are  guaranteed  to  define  a  finite  set  of  random                 
variables.  Stan  (Gelman,  Lee,  and  Guo  2015),  BUGS  (Spiegelhalter  et  al.  1996)  and  Infer.NET  (Minka  et                 
al.  2013)  are  prominent  examples  with  many  real-world  use  cases.  van  de  Meent  et  al.  2018  calls  these                   
languages  "first-order"  (FOPPLs).  Another  important  class  of  languages  are  those  that  are             
computationally  universal,  allowing  random  choices  in  any  statement  or  expression.  Church  (Goodman  et              
al.  2008),  Venture  (Mansinghka,  Selsam,  Perov  2014),  Anglican  (Wood,  van  de  Meent,  and  Mansinghka               
2014),  Pyro  (Bingham  et  al.  2018),  TensorFlow  Probability  (Dillon  et  al.  2017,  Tran  et  al.  2017)  and                  
PyProb  (Baydin  et  al.  2019)  are  all  examples  of  this  class.  Another  important  class  of  languages  are  those                   
that  support programmable  inference, i.e.  they  enable  the  user  to  customize  inference  using  high-level               
constructs,  to  meet  the  performance  and  accuracy  requirements  of  a  given  application  .  Examples  include                
Venture  (Mansinghka,  Selsam,  Perov  2014;  Mansinghka  et  al.  2018),  Pyro  (Bingham  et  al.  2018),  and                
Gen   (Cusumano-Towner   et   al.   2019).   

Research  in  this  field  has  primarily  been  driven  by  the  desire  for  effective  tools  to  enable  statistical  and                   
machine  learning  research,  and  there  has  been  little  specialist  attention  to  studying  the  usability  of  PPLs,                 
or  designing  features  that  enhance  usability.  There  has  also  been  relatively  little  attention  to  PPLs  in  the                  
human-centric  computing,  software  engineering,  software  visualisation  or  visual  languages  communities,           
with  the  exception  of  a  small  number  of  experiments  conducted  by  authors  of  this  paper  (systems  built  by                   
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authors  Gorinova,  Erwig  and  Gordon  are  discussed  below,  along  with  unpublished  work  in  progress  by                
authors   Geddes,   Strickson   and   Robinson).  

The   Idea   of   a   Probabilistic   Programming   Language  

The  diversity  of  technical  approaches  just  described  mean  that  there  is  no  single  conception  of  what                 
probabilistic  programming  provides.  There  is  even  less  consensus  on  where  PPL  approaches  might  take               
us  in  the  future  (for  example,  when  used  as  an  implementation  platform  for  experiments  with  deep                 
generative  models,  or  when  probabilistic  programs  scale  up  to  100s  or  1000s  of  lines  of  code).                 
Nevertheless,  it  is  useful  to  consider  why  this  paradigm  offers  a  distinctive  intellectual  appeal,  in  terms  of                  
the  role  of  computation  within  a  scientific  enquiry.  Let’s  consider  one  of  the  possible  styles  of                 
probabilistic   programming,   in   which   we   focus   on   simplicity,   interpretability,   and   causality.  

Our  modern  understanding  of  the  world  started  with  a  revolutionary  insight  and  discovery.  While               
analysing  the  data  of  the  position  of  stars  and  planets  in  the  night  skies,  astronomer  Johannes  Kepler                  
found  a  function  that  reliably  describes  the  data,  and  hence  models  the  movements  of  planets  in  the  solar                   
system.  A  simple  function  was  able  to  capture  the  ‘big’  data,  supported  predictions,  and  led  to  new                  
scientific  insights.  Finding  a  function  that  describes  a  given  set  of  data  has  since  appeared  in  different                  
shapes  and  forms.  Carl  Gauss  had  a  clear  model  of  how  the  function  should  look  like,  but  had  to  deal  with                      
imprecision  and  uncertainty  in  the  data  when  he  developed  least-squares  linear  regression.  And  Joseph               
Fourier's  description  of  data  through  trigonometric  functions  builds  a  basis  of  today's  signal  processing.  In                
contrast  to  Kepler's  great  feat  of  finding  a  new  model,  subsequent  methods  have  mostly  focused  on                 
adapting   a   known   (or   assumed)   model   to   the   data.  

In  recent  years,  AI  research  has  made  significant  impact  with  neural  networks  -  a  universal  set  of                  
functions  that  can  model  a  wide  variety  of  data.  With  higher  power  computing  systems,  deep  and  complex                  
networks  can  describe  many  data  sets  with  surprising  precision.  However,  there  is  a  catch:  in  their                 
universality,  neural  networks  provide  little  insight  about  the  actual  underlying  models  behind  the  data.  We                
often  struggle  to  understand  exactly  how  a  neural  network  describes  a  given  set  of  data:  the  price  of                   
universality.  

Like  Gauss  and  Fourier,  however,  we  often  do  have  an  understanding  of  what  the  model  behind  the  data                   
should  look  like.  For  linear  regression,  for  instance,  we  assume  a  linear  relationship  in  the  data  set  and                   
could  thus  replace  the  potentially  huge  and  complex  model  of  a  neural  network  with  a  much  simpler                  
model  featuring  just  a  few  parameters.  All  we  need  is  a  method  to  find  meaningful  values  for  the                   
parameters  in  our  model,  whatever  model  we  choose.  This  is  one  of  the  valuable  opportunities  offered  by                  
probabilistic   programming   methods.  

Probabilistic  programming  in  this  sense  combines  the  descriptive  power  of  simple  models  with              
sophisticated  methods  to  adapt  the  parameters  in  your  model  to  given  data.  At  the  core  of  probabilistic                  
programming  are  a  set  of  "inference  algorithms"  not  unlike  the  “learning  algorithms”  one  encounters               
when  training  a  neural  network.  However,  instead  of  training  a  universal  neural  network  using  data                
samples,  the  user  writes  a  specific  model  in  a  probabilistic  programming  language  and  infers  its                
parameters  through  conditioning  on  data.  As  with  earlier  generations  of  declarative  logic  programming              
and  expert  system  knowledge  representation  languages,  a  probabilistic  program  is  not  run  in  the  classical                
sense,  but  instead  makes  inferences.  AI  advocates  sometimes  say,  of  neural  network  optimization,  that  the                
system  is  being  ‘taught’,  rather  than  programmed  -  but  to  apply  this  analogy  to  probabilistic  programming                 
neglects  the  work  done  by  the  PPL  programmer,  and  in  particular  the  potential  in  some  languages  to                  
implement  alternative  inference  models  (a  layer  of  abstraction  where  the  computation  is  expressed  in               
more   conventional   imperative   form,   e.g.   PLDI   2018).   
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How   does   statistical   modelling   relate   to   probability?  

Classical  linear  regression  is  built  on  the  principle  of  least  squares:  on  the  idea  that  there  is  a  single  pair  of                      
parameter  values  for  which  the  "error"  between  model  and  data  is  minimal.  However,  in  reality,  linear                 
regression  hardly  ever  returns  the  true  underlying  parameters  exactly  -  although  we  expect  the  result  to  be                  
close  to  the  true  values,  at  least  if  the  linear  model  is  a  good  fit  for  the  data.  Our  confidence  in  the                       
proposed  parameter  values  will  then  also  increase  when  more  data  points  are  captured  by  the  function.  On                  
the  flipside,  if  the  linear  model  is  a  bad  fit  for  the  data  in  the  first  place,  the  algorithm  will  never  produce                       
truly   meaningful   and   accurate   values.  

In  the  context  of  probabilistic  programming,  we  do  not  seek  a  single  value  for  each  parameter  of  the                   
model,  hoping  that  all  of  these  values  when  taken  together  will  make  our  overall  model  a  good  fit  to  the                     
data.  It  is  much  more  natural  in  the  Bayesian  context  to  think  of  the  value  of  each  parameter  in  terms  of                      
probability  distributions.  Instead  of  reporting  the  single  ‘best’  (most  likely)  value  for  each  parameter  of                
the  model,  the  inference  engine  can  tell  you  how  likely  any  value  for  that  parameter  would  be  -  as  a                     
posterior   distribution   that   is   informed   by   your   prior   expectation   regarding   the   model   structure.  
 
Think   of   it   this   way:   if   your   model   really   fits   your   data,   the   inference   engine   will   single   out   a   range   of  
values   for   your   parameters   that   makes   the   entire   model   a   very   probable   candidate   for   describing   the   data.  
If   the   model   does   not   fit   your   data,   the   inference   engine   will   find   that   no   specific   set   of   parameter   values  
really   stands   out,   and   that   no   combination   of   values   would   make   your   model   a   particularly   probable  
explanation   for   the   data.   

 
Figure   1:    If   the   linear   model   is    not    a   good   fit   for   the   data   (on   the   left),   no   line   really   stands   out,   and   all   possible   parameters   have  
more   or   less   the   same   probability   (the   probability   density   function   has   many   peaks,   each   corresponding   to   a   different   line   on   the  
scatter   plot,   with   little   similarity   between   them   and   none   clearly   better).   Even   though   we   might   find   a   “best”   fit,   it   does   not   really  
distinguish   itself   from   the   rest.   However,   if   the   linear   model   is   a   good   fit   for   the   data   (on   the   right,   with   a   single   clearly  
distinguished   peak   in   the   probability   density   function   corresponding   to   many   similar   lines   on   the   scatter   plot),   then   some   choices  
for   parameter   values   are   clearly   better   than   others   and   stand   out   as   highly   probable   values.  

As  noted  in  the  introduction  to  this  section,  we  have  presented  a  relatively  straightforward  interpretation                
of  probabilistic  programming,  to  illustrate  the  potential  appeal  of  the  paradigm  as  a  scientific  tool  and                 
educational  approach.  Current  and  future  developments  in  PPLs  include  far  more  complex  approaches  to               
modelling  and  generation,  that  might  not  necessarily  retain  this  intuitive  appeal.  Nevertheless,  this              
straightforward  style  of  application  offers  a  starting  point  for  broadening  access  to  PPL  methods,  as                
discussed   in   the   following   sections.  
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The   end-user   development   perspective   on   PPLs  
 
Several  PPL  research  projects  have  aimed  to  make  PPLs  accessible  to  end-user  programmers,  especially               
spreadsheet  users  and  database  users.  PPLs  also  present  new  usability  challenges  that  fall  especially               
heavily   on   end   users   who   lack   a   deep   understanding   of   the   impact   of   approximation   on   their   results.   
 
How   can   we   make   probabilistic   programming   accessible   to   spreadsheet   users?  

It  is  often  observed  that  more  people  create  programs  in  spreadsheets  such  as  Excel  than  in  all  other                   
programming  languages  combined  (Scaffidi  et  al  2005).  Many  business  data  processing  applications  that              
would  have  required  professional  programmers  to  implement  them  in  the  1960s  or  70s  are  now  routinely                 
created  by  people  who  have  never  received  any  formal  training  in  programming,  but  are  able  to  use                  
spreadsheets  to  implement  a  wide  variety  of  straightforward  accountancy  and  data  processing             
applications.  The  spreadsheet  paradigm  is  approachable  in  part  because  of  the  way  that  it  offers  a  concrete                  
perspective  on  the  object  of  interest  (the  user’s  data)  rather  than  on  the  abstractions  of  programming.                 
Nevertheless,  it  is  possible  to  extend  the  spreadsheet  paradigm  with  sophisticated  abstract  capabilities              
such   as   those   of   functional   programming   languages   (Peyton   Jones   et   al   2003).  

Commercial  extensions  to  the  spreadsheet  paradigm  are  generally  driven  by  the  business  needs  of               
spreadsheet  users,  who  have  practical  problems  to  solve  rather  than  being  driven  by  technical  curiosity  or                 
research  agendas.  These  are  defined  as  end-user  programmers  (Blackwell  2006,  2017),  end-user             
developers  (Lieberman  et  al  2006)  or  even  end-user  software  engineers  (Ko  et  al  2011).  Increased                
business  interest  in  the  methods  of  statistical  data  science  suggests  that  these  end-users  are  likely  to  find                  
value  in  PPL  capabilities,  especially  if  presented  in  an  interaction  context  such  as  a  spreadsheet,  where                 
users  would  be  able  to  construct  and  interpret  the  behaviour  of  their  program  in  the  context  of  the  data                    
that  it  relates  to.  The  usability  advantages  of  data-centric  presentation  have  already  been  observed  in                
previous  evolution  of  statistical  applications,  such  as  the  adoption  of  a  spreadsheet-style  data  view  in  the                 
popular  SPSS,  when  the  SPSS-X  release  under  Windows  2.0  included  a  tabular  data  editor  that  became                 
established   as   the   primary   user   interface   for   the   GUI   versions   of   the   product.  

Considering  PPLs  from  this  data-centric  perspective,  in  terms  of  the  tasks  of  end-users,  raises  interesting                
questions  about  the  boundaries  of  the  programming  task.  End-users  who  are  creating  simple  scripts  or                
macros  to  automate  repetitive  actions  often  deal  implicitly  with  the  attention  investment  tradeoff,              
calculating  whether  the  programming  effort  will  pay  off  in  saved  time  (Blackwell  2002).  Because               
spreadsheets  allow  exceptional  conditions  to  be  handled  by  direct  manipulation  (just  changing  the  cells               
concerned),  spreadsheet  programmers  are  far  less  likely  to  devote  a  lot  of  effort  to  anticipating  infrequent                 
situations  in  their  code.  This  is  a  very  familiar  situation  to  data  scientists  responsible  for  “data  wrangling”                  
-  formatting,  organising  and  cleaning  data  sets  for  statistical  analysis.  Although  standard  research  and               
teaching  data  sets  have  been  cleaned  in  advance,  making  wrangling  distinct  from  modelling,  real-world               
data  science  involves  a  far  more  ambiguous  relationship  between  the  two.  It  is  often  difficult  to  judge                  
whether  unexpected  data  values  are  errors,  outliers,  or  important  clues  to  an  inappropriate  model.  If                
probabilistic  programming  involved  closer  interaction  with  original  data,  this  would  provide  the             
opportunity  for  “wrangling”  operations  to  inform  the  programmed  model.  It  would  also  provide  the               
opportunity  for  the  mundane  tasks  of  wrangling  to  be  automated  through  inference,  as  in  the  Data                 
Noodles  prototype  by  some  of  the  authors  (Gorinova  et  al.  2016)  that  allows  users  to  demonstrate  how                  
they  would  like  their  data  to  be  arranged  in  a  table,  then  searches  for  a  set  of  structural  transformations                    
that   will   generate   that   table.  
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The  same  redefinition  of  boundaries,  in  a  data-centric  approach  to  end-user  probabilistic  programming,              
might  allow  us  to  revisit  the  definition  of  labelling,  in  the  machine  learning  lifecycle.  At  present,  most                  
supervised  learning  systems  rely  on  data  that  has  been  labelled  with  a  “ground  truth”  of  human                 
interpretation,  often  obtained  via  Mechanical  Turk,  or  forced  tasks  such  as  ReCAPTCHA.  The  people               
who  carry  out  these  labelling  tasks  may  have  some  insight  into  the  modelling  assumptions  (for  example  in                  
relation  to  implicit  bias  in  the  judgments  they  have  been  asked  to  make,  or  explanations  of  why  they  made                    
a  particular  judgment).  However,  those  insights  are  often  not  captured,  or  may  even  be  discarded,  in                 
conventional  machine  learning  paradigms.  There  have  been  some  experiments  in  semi-supervised  or             
mixed-initiative  approaches  to  labelling,  for  example  supporting  more  dynamic  structuring  of  label             
categories.  However,  more  sophisticated  approaches  could  be  enabled  if  the  data  views  presented  to  the                
labeller  offered  more  direct  insight  into  the  structure  and  behaviour  of  the  model,  perhaps  even  allowing                 
trusted  labellers  to  make  incremental  adjustments  or  modifications  to  the  structure.  A  complementary              
benefit  would  be  realised  by  data  scientists  themselves,  who  are  often  advised  to  spend  more  time  looking                  
at  the  data,  before  making  assumptions  about  the  structure  of  the  model.  Allowing  the  end-user                
programmer  to  contribute  to  labelling  in  a  way  that  was  continuous  with  the  modelling  task  allows  more                  
sophisticated  reasoning  across  multiple  levels  of  abstraction,  in  a  manner  that  is  analogous  to  the  constant                 
shifts   in   level   of   abstraction   that   are   observed   in   studies   of   expert   programmers   (Pennington   1987,   1995)  

End-user  paradigms  such  as  spreadsheet  programming  also  demonstrate  the  advantages  for  learning  that              
result  from  bridging  across  levels  of  abstraction.  Modern  user  interfaces  appear  more  intuitive  because  a                
handful  of  basic  principles  can  be  applied  in  a  concrete  manner,  together  with  discoverability  of  more                 
abstract  functions  and  relations.  All  of  these  design  principles  could  be  applied  to  implement  tools                
supporting  methodologies  such  as  the  Bayesian  workflow  of  explore,  model,  infer,  check,  repeat  (Gabry               
et   al   2019).   

We  can  also  consider  the  potential  to  generate  spreadsheets  from  PPL  specifications.  Two  of  the  authors                 
of  this  paper  (Geddes  and  Strickson)  are  working  on  a  probabilistic  programming  language  –  nocell  –                 
where  the  result  of  running  a  program  written  in  this  language  is  a  spreadsheet  model  applied  to  the  input                    
data.  This  allows  the  advantages  of  spreadsheet  models,  of  understandability  and  immediacy,  to  be               
combined  with  sophisticated  modelling  techniques,  as  well  as  good  software  development  practices  (such              
as  version  control  and  modularity).  A  further  aim  is  to  connect  the  communities  of  software-developer                
data   analysts   with   the   wider   community   of   spreadsheet   users.  

Values  in  nocell  are  probability  distributions,  supporting  arithmetic  operations  and  conditioning  on             
observed  data.  This  is  motivated  in  part  by  the  observation  that  many  spreadsheet  models  are  used  in                  
situations  where  capturing  uncertainty  in  the  model  is  beneficial,  and  that  recent  advances  in  PPL  and                 
machine  language  ideas  could  provide  significant  value  to  users  of  these  models,  who  would  otherwise                
have  limited  access  to  tools  built  on  these  ideas.  This  probabilistic  approach  contrasts  with,  for  example,                 
the  type  of  scenario  analysis  that  is  commonly  performed,  where  "typical",  "typical-low",  "typical-high"              
and  perhaps  more  extreme  values  of  model  inputs  are  considered,  to  obtain  an  idea  of  the  range  of  values                    
that   can   be   produced   by   a   model   (this   could   still   be   useful   as   a    presentational    tool).  

In  the  nocell  approach,  the  programmer  constructs  a  model  as  a  nocell  program,  which  includes  setting                 
appropriate  program  inputs  to  probability  distributions  and  perhaps  describe  observations  of  their  values.              
When  run,  this  program  produces  a  spreadsheet  where  the  program  outputs  are  evaluated  from  particular                
choices   of   input   value,   but   in   addition   are   annotated   with   their   mean   and   standard   deviation.  

An  important  consideration,  driving  some  of  the  current  work,  is  how  the  probability  distribution  of  a                 
value  of  interest  should  be  represented  within  the  spreadsheet.  This  should  be  done  in  a  way  that  conveys                   
useful   information   at   a   level   of   detail   appropriate   for   a   wide   audience.  
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In  fact,  spreadsheets  have  served  as  a  site  for  probabilistic  programming  almost  since  their  inception,  and                 
there  is  a  class  of  user,  the end-user  probabilistic  programmer  (Borghouts  et  al  2019)  who  does                 
probabilistic  programming  in  the  spreadsheet.  There  are  standard  techniques  for  building  Monte  Carlo              
simulations  in  spreadsheets  using  the  RAND()  function.  The  commercial  extensions  @Risk  and  Crystal              
Ball  automate  the  details  of  Monte  Carlo  inference  and  in  so  doing  amount  to  probabilistic  programming                 
languages,  albeit  without  Bayesian  update.  In  his  dissertation,  Streit  (2008)  describes  a  spreadsheet  that               
supports  uncertainty  types,  such  as  a  number  explicitly  tagged  as  an  estimate,  or  a  numeric  interval,  or  a                   
probability  distribution.  Streit  argues  that  such  uncertain  values  should  propagate  through  spreadsheet             
calculations.  Borghouts  et  al  (2019)  conjecture  that  at  present,  there  may  be  as  many  as  ten  times  more                   
end-user   probabilistic   programmers   in   spreadsheets,   than   programmers   who   use   mainstream   PPLs.  

Another  promising  area  of  application  of  PPLs  is  in  the  design  of  information  systems  that  advise  doctors                  
when  they  are  making  medical  decisions.  Diagnostic  reasoning  is  a  natural  fit  for  application  of  PPLs                 
since  doctors  use  Bayesian  reasoning  as  they  gather  evidence  from  examining  patients  and  conducting               
tests  and  update  their  confidence  in  particular  diagnoses  accordingly.  One  barrier  to  adoption  of  these                
languages  for  medical  professionals  is  that  they  may  not  have  the  statistical  or  computing  expertise.  If                 
PPLs  could  be  adapted  into  a  form  that  would  be  approachable  to  doctors,  starting  with  what  they  are  and                    
the  main  advantages  of  using  them,  decision  support  systems  could  potentially  be  designed  in  a  way  that                  
is  helpful  and  supportive  of  their  reasoning  and  approaches.  Designing  these  tools  with  the  help  of  doctors                  
is  key  both  to  their  usefulness  as  well  as  widespread  adoption.  Understanding  the  tools  builds  trust,  which                  
is  essential  to  their  uptake  as  doctors  will  need  to  first  understand  and  then  communicate  and  support  their                   
findings   to   their   patients.  
 
How   can   we   make   PPLs   accessible   to   database   users?  
 
Database  users,  especially  those  familiar  with  SQL,  are  another  important  and  widespread  group  of               
end-user  programmers,  To  make  PPLs  accessible  to  these  users,  we  need  to  address  several  usability                
challenges.  First,  database  users  are  often  accustomed  to  SQL-like  languages  and  data  types,  and  may  be                 
unfamiliar  with  the  general-purpose  programming  languages  in  which  PPLs  are  often  embedded.  We  thus               
need  PPLs  that  are  tightly  integrated  into  existing  database  environments,  and  that  offer  SQL-like               
interface  for  specifying  models  and  performing  inference.  Second,  database  users  are  unlikely  to  be               
familiar  with  the  mathematics  needed  to  diagnose  failures  of  approximate  inference.  We  thus  need  to                
develop  PPLs  in  which  inference  is  guaranteed  to  be  accurate,  so  that  database  users  can  understand                 
system  outputs.  Third,  database  users  are  likely  to  have  qualitative  domain  knowledge  and  access  to  data,                 
but  may  not  know  how  to  encode  domain  knowledge  in  the  form  of  a  probabilistic  model.  We  thus  need                    
ways  to  empower  these  users  with  automated  ways  of  building  models  from  data,  and  also  provide  them                  
with  automated  methods  for  adjusting  those  programs  in  light  of  incremental  changes  to  the  database                
schema   and   source   data.  
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Some  PPLs  have  begun  to  explore  ways  to  address  these  challenges.  For  example,  the  BayesDB  platform                 
offers  an  SQL-like  probabilistic  language  for  building  models  and  using  these  models  to  infer  missing                
and/or  unlikely  values  in  the  data  (Saad  &  Mansinghka  2016;  Mansinghka  et  al.  2015).  It  also  provides                  
automated  Bayesian  data  modeling  mechanisms  that  build  baseline  models  for  tabular  data  (Mansinghka              
et  al.  2009,  2016).  These  models  are  written  in  domain-specific  probabilistic  languages  (Saad  et  al.  2019)                 
in  which  inference  can  be  implemented  exactly  (Saad  &  Mansinghka  2016),  and  learned  from  data  via                 
Monte  Carlo  methods  that  scale  to  databases  with  tens  of  millions  of  cells  (Obermeyer  et  al.  2014).                  
BayesDB  can  use  this  models  for  automated  exploratory  data  analysis,  e.g.  to  report  Bayesian  inferences                
about  the  probable  structure  and  strength  of  predictive  relationships  between  variables  (Saad  &              
Mansinghka,   2017).  

The   educational   perspective   on   PPLs   

Languages  such  as  Scratch  (Resnick  et  al  2009)  include  both  an  application  domain  (in  the  case  of                  
Scratch,  an  architecture  for  agent-based  graphical  canvas  operations)  and  an  educationally-oriented  IDE             
(in  the  case  of  Scratch,  a  block-syntax  editor  and  a  library  browser).  The  graphics  application  domain                 
echoes  the  emphasis  on  graphics  in  many  earlier  educational  languages  from  Logo  to  AgentSheets  and                
Alice.  Such  languages  bring  a  Piagetian  perspective  to  computation,  for  example  the  Scratch  sprite  or                
Logo  turtle  help  the  learner  to  think syntonically  about  program  execution,  by  allowing  the  learner  to                 
reason  about  a  computational  agent’s  behaviour  (Watt  1998,  Pane  2002).  Furthermore,  as  often  advocated               
by  Kay,  tangible  representations  can  help  provide  a  concrete  manipulable  representation  that  helps              
learners   to   reason   about   abstract   relations   (Repenning   1996,   Edge   2006,   Kohn   2019).  

Beyond  the  cognitive  and  notational  advantages  of  a  graphical  application  domain,  a  core  motivation  has                
been  that  graphics  are  fun.  Children  enjoy  drawing,  and  freedom  of  graphical  expression  can  help  bring  a                  
creative  and  exploratory  attitude  to  the  introduction  of  novel  notation  systems  (Stead  2014).  How  do  we                 
make  teaching  about  (Bayesian)  probability  fun,  through  use  of  an  application  domain  that  motivates               
learners?  Much  traditional  teaching  of  probability  follows  the  traditions  of  Bayes  himself,  and  other  early                
theorists,  in  exploring  the  mathematical  implications  of  gambling  (coin  tosses,  dice  throws,  card  shuffling               
etc).  Teaching  of  frequentist  statistics  is  largely  grounded  in  the  logic  of  hypothesis  testing,  and  taught  in                  
the  service  of  biology  or  psychology.  Might  contemporary  problems  of  data  science  be  more  motivational                
as  an  application  domain  for  education?  For  example,  local  children  are  affected  by  traffic  speed  on  a                  
road  outside  their  school.  The  council  reports  an  average  speed  slightly  under  the  speed  limit  as  evidence                  
that  there  is  no  danger.  Would  children  be  motivated  by  gaining  access  to  the  council’s  raw  data,  and                   
exploring   the   implications   of   those   distributions   for   themselves?  

A  probabilistic  programming  IDE  might  potentially  include  live  visualisations  of  the  model;  direct              
dependencies  and  probability  distributions,  highlighting  conditional  independencies,  as  well  as  providing            
tools  for  visual  or  numerical  diagnostics.  Some  of  these  ideas  have  been  explored  by  previous  work.  For                  
example,  some  of  the  present  authors  (Gorinova  et  al  2016)  presented  a  live,  multiple-representation               
environment  (MRE)  for  the  probabilistic  programming  language  Infer.NET.  Alongside  the  Infer.NET            
code,  the  environment  maintains  a  visualisation  of  the  program  as  a  Bayesian  network  (a  directed  acyclic                 
graph,  encoding  the  conditional  dependencies  between  variables).  The  marginal  distribution  of  each             
variable  is  also  visualised.  Gorinova  et  al  (2016)  show  that,  when  presented  with  debugging  and  program                 
description  tasks,  users  inexperienced  in  probabilistic  modelling  are  faster  and  more  confident  when  using               
the  MRE  compared  to  when  using  a  conventional  programming  environment.  Participants  were  also  more               
likely  to  give  a  higher-level  description  of  the  dependencies  in  the  model  when  using  the  MRE,  as                  
opposed  to  a  lower-level  code  description.  This  suggests  that  live  visualisations  can  be  a  useful  way  of                  
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teaching  core  concepts  in  Bayesian  reasoning,  and  of  drawing  a  clear  distinction  between  conventional               
and   probabilistic   programming.   

At  PPIG  2018,  Andrea  diSessa  made  the  provocative  suggestion  that  school  science  lessons  such  as                
physics  should  in  future  be  taught  through  students  constructing  their  own  computational  simulations  of               
the  phenomenon,  rather  than  through  algebraic  analysis  and  fitting  of  experimental  observations.             
Scientific  simulation  has  been  a  common  application  domain  for  educational  programming  languages  in              
the  past,  for  example  in  Repenning’s  AgentSheets,  and  Cypher’s  KidSim.  We  might  imagine  the               
possibility  that  teaching  of  probability  in  schools  could  be  better  achieved  through  modelling  in  a  PPL.                 
Indeed,  Goodman  and  Tenenbaum’s Probabilistic  Models  of  Cognition  includes  interactive  code            
examples  implemented  in  WebPPL,  Lee  and  Wagenmakers  text  on Bayesian  Cognitive  Modelling  uses              
BUGS,  and  Andrew  Gelman’s  courses  at  Columbia  such  as Statistics  GR6103  use  modelling  in  Stan.  At                 
school  level,  we  can  imagine  that  physical  demonstration  apparatus  such  as  a  Galton  Board  could  be                 
simulated   in   software   (this   suggestion   comes   from   a   conversation   with   Breck   Baldwin   at   StanCon   2019).  

Many  research  users  of  PPLs  have  been  mathematicians,  meaning  that  the  “natural”  conceptualisations              
they  are  working  with  may  be  relatively  sophisticated  in  mathematical  terms.  But  if  future  applications  of                 
PPLs  are  in  end-user  tasks,  should  educational  priorities  shift  from  support  for  people  who  are  familiar                 
with  the  abstract  operations,  to  those  who  have  to  treat  the  models  and  inferences  as  black  box  behaviour?                   
What  is  the  minimum  conceptual  framework  for  thinking  about  the  behaviour  of  Bayesian  models,  and                
might   a   minimum   framework   be   appropriate   in   school   education?  

Hitron  et  al  (2019)  investigated  a  “black  box”  approach,  providing  students  with  an  experimental               
environment  in  which  they  were  able  to  collect  and  label  (gesture)  data,  train  a  classifier,  and  evaluate  the                   
resulting  system  behaviour.  Through  experimentation  with  the  system,  students  did  gain  improved             
understanding  of  supervised  learning.  We  should  consider  such  results  in  relation  to  the  ICT/computer               
science  debate  in  school  curriculum.  The  “ICT”  perspective  was  that  it  was  sufficient  for  students  to                 
know  how  to  use  applications  like  Powerpoint  or  Word,  and  not  necessary  to  understand  how  these  work                  
internally  (i.e.  to  learn  programming).  This  policy  has  now  been  overturned,  in  favour  of  teaching  CS  at  a                   
more  fundamental  level,  employing  concepts  that  were  previously  not  encountered  until  university  level.              
On  which  side  of  this  dichotomy  might  machine  learning  fall  in  future?  Will  training  and  using  an  ML                   
system  (for  example,  predictive  text,  or  spam  filtering)  be  a  routine  everyday  task  analogous  to  the  use  of                   
Word  or  Powerpoint,  or  will  it  be  a  sophisticated  intellectual  task,  providing  a  conceptual  foundation  for                 
science  and  engineering?  Will  students  benefit  from  being  able  to  build  new  classifiers  (using  a  PPL),  or                  
should  a  standard  model  be  used  to  describe  behaviour,  for  example  in  terms  of  feature  selection,                 
convergence,   stability   and   generalisation?  

Much  of  this  prior  research  has  focused  on  teaching  PPL  principles  to  people  who  might  be  expected  to                   
have  some  familiarity  with  principles  of  Bayesian  probability.  However,  even  communicating  these             
principles  may  be  challenging.  Educational  authorities  Gage  and  Spiegelhalter  ask  ‘Why,  then,  do  people               
find  [probability]  so  unintuitive  and  difficult?  Well,  after  years  of  working  in  this  area,  we  have  finally                  
concluded  that  this  is  because  …  probability is  unintuitive  and  difficult.’  (2018,  p.  2).  Can  interactive                 
construction  and  visualisation  of  PPL  models  help  novices  to  gain  an  improved  understanding  of  basic                
principles   of   conditional   probability?  

Here  we  briefly  present  an  approach  to  visualizing  probabilistic  computation  that  is  based  on  using  spatial                 
partitions  as  a  visual  metaphor  for  illustrating discrete probabilistic  values.  In  this  representation,  we               
divide  a  rectangle  into  blocks,  one  for  each  value  of  the  probabilistic  value,  so  that  the  area  occupied  by                    
each  value  corresponds  to  its  probability  (Erwig  and  Walkingshaw  2013).  This  notation  captures  three               
important  features  of  a  probabilistic  value,  namely  (A)  the  fact  that  it  may  consist  of  multiple  values,  (B)                   
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that  each  value  has  a  distinctive  probability  associated  with  it,  and  (C)  that  the  probabilities  of  all  values                   
sum   up   to   1.   For   example,   the   result   of   a   fair   coin   flip   is   represented   in   this   notation   as   in   Fig.   2.  

Coin  

 
Figure   2:    Visualisation   of   the   space   of   possible   values   for   a   fair   coin   toss,   partitioned   into   two   blocks   of   equal   size  

Note  that  showing  the  value  probabilities,  while  helpful  to  users,  is  redundant  as  far  as  the  spatial                  
representation   goes,   since   they   are   derived   from   the   relative   sizes   of   the   partition   blocks.   

This  notation  directly  supports  several  operations  on  probabilistic  values.  Finding  the  probability  of  an               
event  amounts  to  measuring  the  size  of  the  occupied  area.  The  computation  of  a  joint  probability  involves                  
superimposing  rectangles  so  that  the  combination  of  values  “shares”  the  common  space.  An  example  of                
how   this   visualisation   is   constructed   for   two   coin   flips   is   shown   in   Fig.   3   below.   

The  creation  of  the  resulting  partition  can  be  broken  down  into  a  sequence  of  three  basic  spatial                  
operations  (Fig.  3).  (1)  Create  a  copy  of  the  second  partition  for  each  value  in  the  first  partition.  (2)                    
Shrink  each  such  copy  horizontally  to  the  width  of  the  block  of  its  corresponding  value  from  the  first                   
partition.  (3)  Intersect  the  two  partitions,  and  annotate  the  blocks  of  the  resulting  partition  with  the                 
combination  of  the  values  (and  the  product  of  their  probabilities).  The  computation  of  marginal               
probability  distributions  can  be  illustrated  by  a  flow  diagram  that  links  the  original  to  the  result  partition.                  
Arrows  indicate  a  spatial  union  operation  of  all  blocks  that  have  the  same  value  once  a  value  has  been                    
marginalized   out.   

 
Figure   3:    Construction   of   visualisation   of   a   joint   probability.   The   first   coin   toss   has   two   equal   partitions   as   in   Fig.   2.   The   second  
toss   is   represented   by   two   copies   of   that   equally   partitioned   space,   which   have   been   shrunken   horizontally   to   the   same   width   as  
each   original   partition.   The   combination   of   the   first   and   second   values   in   the   third   row   can   be   thought   of   as   superimposing   the  

first   and   second   rows,   with   annotations   now   showing   the   combined   values   and   product   of   probabilities.  

We  illustrate  how  this  notation  can  assist  in  probabilistic  reasoning  by  a  simple  example.  Consider  the                 
following  scenario:  After  throwing  two  coins,  we  are  told  that  one  of  them  came  up  Tails.  What  is  the                    
probability  that  the  other  one  is  Heads?  Many  people  will  state  that  the  probability  is  50%,  whereas  it  is                    
actually  67%.  We  can  illustrate  this  computation  by  starting  with  a  joint  probability  for  two  coins  (Fig  4.).                   
The  first  step  is  to  select  the  blocks  that  correspond  to  the  event  “one  came  up  Tails,”  which  leaves  three                     
blocks,  because  we  exclude  the  one  containing  two  Heads.  These  three  blocks  define  the  probability  space                 
against  which  the  query  “What  is  the  probability  that  the  other  one  was  Heads?”  is  posed.  In  the  second                    
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step,  the  exclusion  of  the  (H,H)  block  requires  a  resizing  of  the  remaining  blocks  to  occupy  the  whole                   
probability  space,  which  leads  to  a  partition  with  3  blocks  that  each  have  an  associated  probability  of  ⅓.                   
The  third  step  requires  the  grouping  of  all  blocks  that  match  the  query  “What  is  the  probability  that  the                    
other  one  was  Heads?”  It  is  easy  to  see  from  Fig.  4  that  this  event  corresponds  to  two  blocks,  which                     
together   occupy   ⅔   of   the   partition.   

Many  probabilistic  programs  are  using  these  basic  operations  as  building  blocks,  and  we  can,  in  principle,                 
apply  the  partition-based  explanation  mechanism  to  explain  the  execution  of  such  programs.  In  (Erwig               
and  Walkingshaw  2013)  we  have  used  this  approach  to  explain  linear  programs  employing  a  story-telling                
metaphor  (Erwig  2017),  but  this  approach  could  also  be  used  to  explain  non-linear  representations  as  used                 
in   probabilistic   reasoning   in   Bayesian   networks.  

 
Figure   4:   Reasoning   about   conditional   probability   distributions   to   calculate   the   probability   that,   given   one   of   two   coins   has   come  
up   Tails,   the   other   one   was   Heads.   The   observation   that   one   of   the   coins   came   up   tails   eliminates   the   case   (H,H).   The   remaining  

three   cases   are   expanded   to   show   that   each   has   a   probability   of   ⅓,   with   two   of   these   three   cases   including   Heads.  

Usability   challenges   arising   due   to   approximations   in   modeling   and   inference  

In  addition  to  the  usual  challenges  arising  from  bugs  in  code,  probabilistic  programmers  need  to  grapple                 
with  new  and  fundamental  gaps  between  their  intentions  and  the  behaviors  produced  by  executing  their                
program.  First,  there  is  the  widely  known  aphorism  that  "all  models  are  wrong,  but  some  models  are                  
useful"  ---  that  is,  the  data  generating  process  in  the  world  that  produces  input  data  will  not,  in  general,                    
exactly  correspond  to  the  modeling  assumptions  encoded  in  the  probabilistic  program.  At  best,  a               
generative  model  will  be  a  useful  approximation  to  the  true  data  generating  process.  Second,  the  inference                 
algorithms  used  in  probabilistic  programming  systems  are  often  approximate,  and  the  quality  of  those               
approximations  (and  the  tradeoffs  between  runtime,  memory  cost,  and  approximation  accuracy)  are  often              
murky,  both  in  theory  and  in  practice.  Thus,  at  best,  inference  results  will  be  a  useful  approximation  to                   
true  Bayesian  inference  in  a  model  that  is  already  itself  at  best  an  approximation  to  the  true  data                   
generating   process.   

How  can  we  help  probabilistic  programmers  inspect,  test,  debug,  and  improve  their  probabilistic              
programs,  in  light  of  these  difficulties?  Cusumano-Towner  and  Mansinghka  (2017)  introduced  a  class  of               
algorithms  for  estimating  the  accuracy  of  inference  algorithms.  Also,  Saad,  Freer,  and  Mansinghka  (2019)               
introduced  new  multivariate  goodness-of-fit  testing  techniques  that  can  help  probabilistic  programmers            
use  synthetic  data  to  check  the  convergence  of  a  broad  class  of  Monte  Carlo  algorithms.  These  techniques                  
can  potentially  be  combined,  to  help  probabilistic  programmers  build  up  a  picture  of  the  accuracy  of                 
inference  on  synthetic  data.  What  about  model  mis-specification?  Recently,  techniques  for  posterior             
predictive  checking,  where  simulated  data  from  inference  is  compared  to  real  data,  to  help  detect  model                 
mis-specification,  have  been  incorporated  into  probabilistic  programming  platforms  such  as  PyMC3.            
However,  these  techniques  only  begin  to  address  the  fundamental  inferential  issues  in  checking  models               
and   estimating   inference   algorithm   accuracy.  
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What  user  interfaces  could  help  probabilistic  programmers  correctly  apply  these  techniques?  What             
distributed  computing  support  is  needed,  to  make  it  easy  for  a  typical  probabilistic  programmer  to  run                 
thousands  of  synthetic  data  experiments,  as  these  techniques  require?  Could  probabilistic  modeling  help              
probabilistic  programmers  extrapolate  from  synthetic  tests,  to  predict  inference  accuracy  on  real  data?              
What  techniques  could  help  probabilistic  programmers  detect  model  mis-specification,  statically,  before            
running  an  interactive  application?  Is  it  possible  to  write  probabilistic  programs  that  can  detect  model                
mis-specification  dynamically,  as  new  data  is  encountered?  Probabilistic  programmers  urgently  need            
answers   to   these   questions.   

A   furthest-first   initiative:   AI   tools   for   African   students   and   researchers  

A  common  strategy  in  other  fields  of  usability  research  and  human-centric  system  design  is  to  consider                 
the  “furthest  first”.  This  identifies  the  class  of  users  who  are  least  well  served  by  the  current  generation  of                    
technology  or  user  interface,  and  gives  priority  to  meeting  the  needs  of  those  people.  It  often  turns  out                   
that  a  design  strategy  focused  on  those  who  are  least  well-served  results  in  benefits  for  all  users.  Perhaps                   
the  most  dramatic  example  of  this  strategy  in  programming  language  research  was  the  Smalltalk               
language,  initially  proposed  as  part  of  the  KiddiKomp  project  at  Xerox  PARC  (Kay  1996),  as  one  of  the                   
first  programming  languages  that  would  be  accessible  to  children.  As  it  turned  out,  Smalltalk  was  more                 
popular  among  adult  programmers  than  among  children  (although  the  underlying  principles  did  continue              
to  benefit  very  young  programmers,  in  particular  through  the  Smalltalk  architecture  that  underpins  the               
Scratch  language).  But  an  even  more  dramatic  outcome  of  the  Smalltalk  project  was  the  way  in  which  it                   
required  the  developers  to  rethink  many  other  aspects  of  the  programming  user  interface,  leading  to  the                 
invention  of  icons,  windows,  menus,  and  many  other  elements  of  the  modern  GUI.  A  furthest-first                
approach   to   programming   language   research   can   have   extraordinarily   far-reaching   impact.  

One  of  the  authors  (Blackwell)  is  currently  planning  a  year-long  project,  investigating  the  requirements               
for  probabilistic  programming  among  a  population  that  are  currently  not  well-served  by  existing              
languages  for  AI  and  data  science  research.  He  plans  to  collaborate  with  programmers,  end-users  and                
students  in  four  different  African  countries  (Uganda,  Kenya,  Ethiopia  and  Namibia).  This  builds  on  work                
by  author  Church  and  others  (e.g.  Church,  Simpson  et  al  2018)  designing  new  tools  and  architectures  for                  
social  science,  public  health  and  humanitarian  research  using  text  data  obtained  via  SMS  from  regions                
with  poor  communications  infrastructure.  The  application  of  AI  methods  in  such  contexts  is  often               
intended  to  empower  local  actors  rather  than  follow  the  typical  business  models  of  software  start-ups,                
meaning  that  greater  access  to  configuration  and  control  through  accessible  programming  languages  could              
be  particularly  important.  Economic  and  political  models  may  also  differ  from  those  in  typical  software                
technology  contexts,  for  example  considering  whether  those  who  contribute  cognitive  labour  as  a              
condition  of  access  to  media  should  be  paid  for  their  work  (Blackwell  2019).  The  specific  aspirations  of                  
people  in  low  income  countries  are  also  likely  to  be  different,  in  shaping  the  imagination  of  what  AI                   
systems  can  possibly  do  -  providing  tools  that  allow  people  to  explore  their  own  imaginative  ideas                 
therefore  offers  support  for  innovations  that  might  not  have  been  anticipated  in  corporate  laboratories  or                
universities   in   wealthy   countries.  

Some   research   issues   that   may   be   productive   in   these   furthest-first   contexts   include:  

● Redraw   system   boundaries   to   consider   interaction   between   labelling   and   modelling  
● Consider   reform   of   postcolonial   school   curricula   in   maths   and   probability  
● Explore   AI   as   enabling   structural   innovation,   not   data   science   as   statistical   bureaucracy  
● Acknowledge   the   economic   and   political   tensions   in   cognitive   labour   such   as   labelling  
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We  have  already  noted  the  specifically  educational  challenges  and  opportunities  in  the  design  of  PPLs.                
These  may  present  differently  in  low-income  countries,  and  in  relation  to  the  mathematics  curriculum               
taught  in  those  countries.  One  interesting  possibility  is  the  role  of  probabilistic  models  in  public  discourse                 
and  activism,  for  example  Carroll  and  Rosson’s  investigation  of  end-user  development  practices  as  part  of                
participatory  design  for  community  informatics  (2007).  Experiments  such  as  use  of  AgentSheets  to              
discuss  local  community  policy  (Arias  et  al  1999)  demonstrate  the  ways  that  simulation  models  might  be                 
integrated  into  other  social  contexts.  We  might  describe  this  as  “broad  learning”  in  contrast  to  “deep                 
learning”,  where  a  wider  range  of  people  are  able  to  participate  in  the  definition  of  models,  rather  than                   
simply   providing   training   data   labels.  

If  teaching  resources  are  limited,  we  might  also  consider  following  the  design  strategy  of  Sonic  Pi  and                  
other  educational  languages,  in  which  all  tutorial  content  is  integrated  into  the  IDE  itself.  Sonic  Pi  has                  
been  successfully  applied  in  an  African  context  during  the  CodeBus  Africa  project  that  toured  schools  in                 
10   African   countries   over   100   days   in   2017   (Bakić   et   al   2018).  

Conclusion  

This  discussion  represents  work  in  progress.  Although  some  initial  advances  have  been  reported  here               
(summarising  earlier  publications),  this  paper  should  primarily  regarded  as  a  manifesto  for  promising              
research  directions  in  the  development  of  more  usable  PPLs.  Several  of  the  authors  have  substantial                
research  projects  in  progress,  and  readers  interested  in  this  topic  are  encouraged  to  follow  developments                
from   those   who   have   contributed.  

A  key  message  emerging  from  our  discussions  is  that  the  core  principles  in  PPLs  are  going  to  be  relevant                    
to  several  very  different  classes  of  programmer,  and  that  each  of  these  classes  will  have  very  different                  
usability  requirements.  At  present,  most  users  of  PPLs  are  researchers.  Researchers  do  have  usability               
needs,  including  straightforward  considerations  of  effective  software  engineering  tools  (debuggers,           
tracers,  smart  editors  and  so  on).  It  would  be  possible  to  carry  out  more  comprehensive  task  analysis  of                   
research  work  processes,  for  example  as  in  Marasoiu’s  study  of  data  scientists  (2017),  to  identify  the                 
activity  profiles  of  these  researchers  and  identify  ways  to  optimise  tools  and  notations  that  suit  those                 
profiles.  It  would  also  be  possible  to  study  the  design  representations  that  they  already  use,  and  integrate                  
versions  of  these  more  closely  into  data  science  tools  (for  example,  as  in  author  Gordon  et  al’s  (2014)                   
Tabular  alternative  to  “plates  and  gates”  diagrams).  A  second  class  of  programmer  is  the  person  who                 
needs  to  define,  explore  and  apply  probabilistic  models,  but  is  unlikely  to  have  specialised  training  (the                 
end-user  case).  For  this  class,  building  on  familiar  representation  conventions  such  as  spreadsheets  or               
databases  is  likely  to  be  valuable,  in  addition  to  supporting  more  casual  and  data-centric  workflows.  A                 
third  class  is  the  pedagogic  application,  where  the  users  are  students  acquiring  an  understanding  of  data                 
science  methods  or  even  simple  principles  of  Bayesian  probability.  For  this  class,  conceptual  clarity,               
minimal  distracting  syntax,  and  correspondence  to  naturalistic  descriptions  is  likely  to  be  important.              
Because  most  classroom  programming  exercises  are  built  once  and  discarded,  language  considerations             
that  are  essential  for  software  engineering  (such  as  project  documentation,  design  traceability,             
configuration  management  and  performance  optimisation)  may  be  distracting  rather  than  helpful.  A             
repeated  lesson  from  the  past  is  that  uncritical  expectation  for  certain  features  to  be  “intuitive”  for  all                  
users  and  application  can  be  damaging  for  both  educational  and  professional  users,  so  we  hope  to  avoid                  
such   naivety.  
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A   Probabilistic   Postscript  

Two  authors  of  this  paper  (Advait  Sarkar  and  Tobias  Kohn)  were  not  able  to  attend  the  PPIG  workshop                   
where  it  was  presented,  because  they  got  married  on  the  same  day.  Not  to  each  other.  We  invite  readers  to                     
create  a  PPL  model  that  would  estimate  the  prior  likelihood  of  such  an  event,  for  any  given  research                   
publication,  and  thus  assess  the  risk  that  this  might  continue  to  be  a  risk  at  future  PPIG  workshops.  We                    
also   record   our   congratulations   to   Advait   and   Tobias!  
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Appendix   -   technical   discussion   of   the   declarative/imperative/generative   distinction  

During  collaborative  drafting  of  the  introductory  section  of  this  paper,  we  found  considerable  difference               
of  opinion  among  the  authors,  with  regard  to  a  rather  basic  point  -  how  to  define  the  computational  class                    
of  languages  that  PPLs  fall  into.  A  simple  definition  by  reference  to  earlier  research  at  PPIG  could  have                   
referred  to  advocacy  for  declarative  languages  in  the  1980s  and  1990s,  but  there  were  many  important                 
technical  distinctions  -  far  too  many  to  include  in  the  introduction  to  a  paper  on  usability!  The  following                   
appendix  records  the  comment  thread  in  order  to  capture  the  variety  of  issues  that  were  raised  in  this                   
technical  discussion,  many  of  which  will  be  of  interest  to  readers  wishing  to  carry  out  technical                 
experiments   in   the   field.  

Maria   Gorinova  
Some   languages   (e.g.   Pyro   and   Edward)   are   of   generative   nature   ---   the   idea   is   that   the   program   corresponds   to   some  
generative   process   that   describes   the   way   the   data   was   generated.   E.g.   I   roll   a   standard   6-sided   dice   and   write   it   in   a  
variable   n.   I   then   roll   an   n-sided   dice   and   write   the   result   in   a   variable   y.   y   is   4,   what   are   my   believes   about   x?   In   my  
opinion,   this   is   rather   imperative,   and   seems   to   be   treated   as   such   in   science   applications   (e.g.   describe   the   evolution  
of   the   universe   based   on   some   unknown   cosmological   parameters   and   a   particular   hypothesis,   and   then   observe   the  
2D   picture   of   stars   as   seen   from   Earth   to   figure   out   if   the   hypothesis   is   consistent   with   the   data;  
https://arxiv.org/abs/1701.00478 )  

Depending   on   what   one's   mental   model   regarding   a   Stan   program   is,   Stan   can   be   seen   as   either   declarative   or  
imperative   too.   A   Stan   program   can   be   thought   of   as   encoding   different   factors   in   the   joint   probability   distribution  
over   all   random   variables.   In   this   case   it   can   be   said   it's   declarative.   But   a   Stan   program   can   also   be   understood  
as   an   imperative   (and   deterministic)   function   that   computes   the   joint   probability   density   at   a   particular   point.  
Many   Stan   developers   and   users   think   about   their   programs   in   this   way,   and   thus   would   argue   that   Stan   is  
fundamentally   imperative.  
 

Tobias   Kohn  

I   really   like   this   distinction   between   generative   and   declarative.   I   wonder,   though,   if   the   generative   way   is  
something   like   a   "meta-declarative"   way,   where   the   model   is   generated   through   execution   of   the   code.  
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I   am   thinking   here   in   terms   similar   to   how   you   model   an   object   in   OOP.   In   a   language   like   Java,   this   is   done  
declarative   and   rather   statically,   where   you   clearly   specify   each   field   to   be   in   the   class/object   at   "compile   time"   if  
you   will.   In   dynamic   languages   like   Python   or   JavaScript,   however,   an   object   (or   even   a   class)   is   created   through  
the   execution   of   program   code,   allowing   for   dynamic   generation   of   fields.  

Nonetheless,   the   outcome   is   still   about   the   same   in   that   we   have   some   sort   of   model   afterwards.  

As   far   as   I   understand,   probabilistic   systems   in   Python   naturally   tend   to   be   in   a   generative   way,   where   the   model  
is   created   through   execution   of   the   program.   Packages   like   TensorFlow   then   create   internally   a   full   blown  
computation   graph   or   model,   which   can   then   be   inspected   and   manipulated.  

In   all   of   this,   I   feel   that   the   imperative   features   are   more   accidental   because   of   the   chosen   language   or   method  
for   creating   the   model.   But   even   for   very   large   and   complex   models   such   as   the   cosmological   example,   there   is  
an   actual   model   there   that   is   at   least   implicitly   expressed   through   the   language.  

Nonetheless,   I   feel   that   working   out   distinctions   such   as   the   generative   vs.   declarative   way   of   writing   models   can  
be   extremely   helpful   for   novice   programmers   in   that   field,   and   we   should   pick   it   up   as   part   of   our   discussion  
concerning   design   and   education.  

The   description   of   the   two   ways   of   how   to   look   at   a   Stan   program   is   very   nice.   As   I   understand,   the   second   way  
of   looking   at   it   is   as   a   (computable)   function   that   can   be   run   to   obtain   values.   However,   the   "imperative"   nature   of  
this   is   not   really   necessary,   right?   We   could   just   have   the   very   same   idea   in   a   purely   functional   language   without  
imperative   features?  
 

Maria   Gorinova  

Wow,   very   interesting   discussion,   indeed!   Thank   you   so   much   for   the   comments,   this   is   very   thought   provoking.   I  
see   what   you   mean   ---   the   code   is   always   there   to   be   transformed   into   an   inference   algorithm,   rather   than  
describing   the   inference   algorithm   (the   execution)   itself.   I   would   still   argue   that   PPLs   can   also   be   conceptually  
imperative   or   functional,   and   not   necessarily   in   a   meta-declarative   way.   

Take   for   example   the   Lotka-Volterra   population   model.   It   concerns   the   evolution   of   the   population   of   predators  
and   the   population   of   prey.   Suppose   that   we   start   with   X   predators   and   Y   prey,   and   after   time   T   we   have   X_T  
predators   and   Y_T   prey.   The   parameters   of   the   model   p1,   p2,   p3   and   p4   control   the   rate   of   predators   births,  
predators   deaths,   prey   births   and   prey   deaths   respectively.   We   are   interested   in   performing   inference   on   these  
parameters   given   X,   Y,   X_T   and   Y_T.   A   probabilistic   program   describing   the   evolution   of   the   system   can   then   be  
written   (in   rough   pseudo-code)   as   follows:  

```  

//   observe   initial   size   of   the   populations  

observe(x   =   X,   y   =   Y)   

t   =   0   //   start   at   time   0  

while(t   <   T){  

//   sample   time   of   next   interaction  

dt   ~   p(t)   

 

//   sample   i   ---   the   interaction   that   actually   happens  

i   ~   categorical([exp(p1)*x*y,   exp(p2)*x,   exp(p3)*y,   exp(p4)*x*y])   

if   (i   =   1)   x   +=   1   //   predator   birth  

if   (i   =   2)   x   -=   1   //   predator   death  

if   (i   =   3)   y   +=   1   //   prey   birth  
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if   (i   =   4)   y   -=   1   //   prey   death  

 

//   go   forwards   in   time  

t   +=   dt   

}  

//   observe   actual   population   size   at   time   T  

observe(x   =   X_T,   y   =   Y_T)   

```  

 

Maria   Gorinova  

There   is   a   probabilistic   model   behind   it   indeed,   but   this   model   literally   is   the   generative   process   given   by   the  
program.   There   is   some   random   number   of   random   variables   inside   the   program.   We   can’t   create   a   factor   graph  
or   other   graphical   model   describing   this.   We   can’t   even   write   down   the   likelihood   of   this   model   in   a   meaningful  
way   (the   likelihood   is   intractable   here).   Inference   methods   that   are   applicable   to   this   model   would   literally   run   the  
simulation   forwards   many   times,   either   rejecting   impossible   runs   (e.g.   approximate   Bayesian   computation   ---  
quite   inefficient),   or   using   neural   networks   to   approximate   the   posterior   or   likelihood   (e.g.   sequential   neural  
likelihood   ---    https://arxiv.org/abs/1805.07226 ).   So   the   model   is   the   generative   process   given   by   the   program.   

To   the   best   of   my   knowledge,   such   programs   can   be   written   in   Python-based   PPLs,   and   also   the   functional  
Anglican.   Edward   and   Pyro   indeed   get   transformed   into   a   Tensorflow/PyTorch   computation   graph,   but   in   the  
newest   version   of   both   languages,   this   graph   is   dynamic.  

Regarding   Stan:   yes,   one   of   the   ways   to   see   a   Stan   program   is   as   specifying   a   computable   function   that  
evaluates   the   (log)   joint   density   of   the   model   for   particular   values   of   the   parameters.   For   example,   if   we   have   a  
model   with   fixed   data   x   and   parameters   z,   the   Stan   code   really   is   a   C-like   function   of   z,   which   returns   a   real  
number   ---   the   density   at   that   z:   real   f(z)   {return   log   p(z,   x);}.   That   function   truly   is   imperative.   Parts   of   it   are  
executed   as   is   during   inference   (the   Stan   compiler   is   written   in   C++).   But   one   could   argue   that   the   actual   Stan  
program   isn’t,   as   it   definitely   possesses   some   declarative   constructs   (e.g.   the   different   program   blocks).   I’m   not  
sure   what   to   think   about   it   either!   

Is   the   imperative   nature   of   this   necessary   and   can   we   write   this   function   in   a   functional   language:   yes,   but   we   can  
write   any   computation   by   using,   say,   the   lambda-calculus.   It   just   might   be   very   messy   for   some   programs,   I  
suppose.   Here   is   a   good   real-life   example   of   a   Stan   program,   for   which   is   not   immediately   obvious   to   me   how   to  
re-formulate   in   a   functional   manner,   due   to   some   random   access   to   arrays,  
etc: https://github.com/pkremp/polls/blob/master/state%20and%20national%20polls.stan  
 

Tobias   Kohn  

Thank   you   very   much   for   your   reply   and   this   great   discussion!  

Let   me   perhaps   briefly   elaborate   what   I   was   trying   to   say   concerning   the   "imperative"   nature   of   programs.  

If   you   look   at   a   silly   little   function   like  

 

def   foo(x):  

x   +=   1  

result   =   [   ]  

result.append(x)  
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return   result  

Then   the   function's   body   is   clearly   written   in   an   imperative   style.   But   I   would   call   this   "imperative"ness   rather  
accidental   as   it   is   of   absolutely   no   importance   to   the   "outside"   world   using   the   function.  

My   thought   was   that   a   prob   prog   program   cannot   really   be   fundamentally   imperative   because   we   want   to   run   and  
rerun   it   for   simulation   and   inference   purposes.   When   the   program   is   intrinsicaly   imperative   in   that   it   changes  
some   external   state   of   the   machine,   each   rerun   takes   place   under   different   conditions.   Hence,   I   concluded   that  
this   cannot   really   be   what   you   meant   with   "imperative".  

If   I   understand   you   correctly,   then   you   argue   that   some   programs   are   intrinsically   imperative   because   the   model  
evolves   with   time   based   on   the   current   state   it   is   in   (such   as   the   Lotka-Volterra),   making   random   access   to  
memory   and   data.   This   is   an   excellent   point.   I   wonder,   however,   if   in   the   end   we   might   actually   talk   about   the  
same   thing   and   just   consider   different   levels   of   abstraction.   Keeping   the   example   of   the   function   above   in   mind:  
do   you   think   that   prob   programs   can   always   be   encapsulated   in   a   "pure"   function,   or   are   there   cases   where  
running   the   program   alters   a   state   that   is   important   for   the   next   rerun?   In   other   words:   are   there   any   prob  
programs   for   which   it   makes   sense   to   discover   how   often   they   have   already   run?  

(this   is   a   serious   question   and   not   a   rhetorical   one)  

Your   Lotka-Volterra   example   is   really   nice,   and   I   like   it   (as   an   example   for   our   discussion).   It   makes   an   excellent  
point   concerning   the   declarative   vs.   generative   style.  

Actually,   I   thought   of   "model"   in   a   much   more   abstract   sense   than   "graphical   model"   or   "factor   graph",   etc.   And   I  
feel   I   can   quite   clearly   see   the   "model"   in   the   Lotka-Volterra,   without   being   able   to   fully   grasp   it.   Still,   your   example  
is   intriguing   and   I   shows   that   my   view   of   generative   programs   as   meta-declarative   is   rather   incomplete   and   falls  
short.  

In   a   way,   each   time   we   run   the   prob   program,   we   get   out   a   different   instance   of   the   underlying   model,   right?   As  
you   say,   the   real   model   itself   is   intractable   here,   defying   any   easy   formulation   as   "graph"   as   we   know   it.  

If   you   indulge   me   in   trying   to   find   some   parallels   to   ground   more   familiar   to   me   (I   am   a   "compilers-guy",   by   the  
way   ̂ _^)...   is   this   not   more   or   less   the   same   thing   a   "constructor"   in   Python   or   JavaScript   does?   Each   time   I   call   it,  
I   get   back   an   instance   of   a   class.   However,   because   of   the   dynamic   nature   of   these   languages,   these   instances  
can   differ   greatly,   and   do   not   even   have   to   have   the   same   structure.  

Mind,   I   am   absolutely   not   sure   if   this   is   actually   the   right   way   of   thinking   about   it   at   all.   I   am   still   convinced,  
though,   that   your   initial   distinction   between   declarative   and   generative   is   very   important,   and   am   trying   to   figure  
out   how   to   properly   process   this...  
 

Atılım   Güneş   Baydin  

I   just   want   to   make   the   comment   that   I   agree   with   Maria's   comment   at   the   top   of   this   comment   chain   that  
probabilistic   programs   are   of   "generative   nature   ---   the   idea   is   that   the   program   corresponds   to   some   generative  
process   that   describes   the   way   the   data   was   generated.   "   This   is   exactly   how   I   see   them.   A   probabilistic   program  
is   an   explicitly   specified   generative   process,   defining   (1)   a   probabilistic   generative   model   and   (2)   the   associated  
joint   prior   distribution   at   the   same   time.  
 

Maria   Gorinova  

Thank   you   so   much   for   clarifying,   Tobias!   I   think   I   understand   much   better   what   you   mean   now.   I   agree:   it   seems  
like   we   may   be   talking   about   the   same   thing,   but   considering   different   levels   of   abstraction.   Indeed,   I   can’t   think  
of   a   meaningful   example   where   the   model   is   a   function   with   side   effects.   I   also   have   no   idea   if   something   like  
that   would   be   possible   (though   I   can’t   immediately   think   why   it   wouldn’t   be   either).   

You   are   right   about   the   similarity   with   constructors   in   Python,   I   think.   An   important   difference   though,   is   that   in  
the   case   of   constructors,   they   are   called   within   the   same   language,   as   part   of   a   bigger   program.   In   probabilistic  
programming,   that   is   only   sometimes   the   case   (all   embedded   PPLs,   I   suppose),   while   in   other   cases   the   program  
is   standalone   (e.g.   Stan).   I   don’t   know   if   that’s   important   at   all.   

Thank   you   again   for   an   excellent   discussion!  
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As   to   the   generative   vs   declarative   distinction:   I   wonder   if   there   is   some   previous   work   that   gives   a   good  
explanation   of   this.   I   can’t   think   of   anything   off   the   top   of   my   head.   But   it   relates   to   the   type   of   supported   models.  
For   example,   if   we   say   that   declarative   PPLs   really   specify   the   factorisation   of   the   joint   distribution   of   all  
variables,   this   corresponds   to   (I   think)   graphical   models   (including   directed,   undirected   and   mixed   graphical  
models,   but   not   arbitrary   stochastic   processes).   While   generative   PPLs   allow   for   a   generative   process   to   be  
described   (including   directed   graphical   models,   but   not   undirected   /   mixed   graphical   models).   If   anyone   knows  
of   a   good   read   describing   this,   please   let   me   know   ---   I   will   be   very   grateful!  

 

Vikash   K.   Mansinghka  

Thanks   for   this   discussion!   Briefly:  

1.   I   think   that   generative   languages   support   both   the   "generative"   and   "declarative"   modes   you're   describing.  

WebPPL   (and   Venture,   and   Gen,   among   others)   allows   for   mixed   undirected   and   directed   models.   For   example,  
WebPPL   has   both   "sampling"   statements   and   "factor"   statements   that   add   terms   to   the   log   density   of   an  
execution   (but   do   not   make   explicit   stochastic   choices).   Languages   without   "factor"   statements   can   also   support  
"undirected"   constraints   via   adding   coin   flips   to   the   model   with   weights   corresponding   to   the   factor   to   be  
multiplied   into   the   joint   probability   density.   This   has   been   used   in   Venture   in   various   applications.  

2.   I   agree   with   earlier   comments   by   Tobias   that   we   need   to   draw   a   distinction   between   languages   that   try   to  
provide   "automated   inference"   (taking   a   "declarative"   view)   and   languages   that   provide   programmable   inference  
constructs   that   let   users   customize   inference   (e.g.   Venture   and   Gen,   but   also   arguably   Pyro,   Edward,   and   Turing,  
to   various   degrees,   and   also   platforms   like   TensorFlow).  

In   our   own   AI   research,   mostly   in   computer   vision   and   Bayesian   data   analysis,   it   has   been   essential   to   be   able   to  
customize   inference.   Automated   inference   doesn't   work   well   enough   ---   generic   Monte   Carlo   and   generic   deep  
learning   architectures   can   both   fail   on   simple   problems   that   are   easy   for   custom   algorithms   to   solve.   This   is   one  
reason   why   we've   worked   hard   to   make   languages   that   support   programmable   inference.  

I   hope   the   probabilistic   programming   community   learns   from   the   experience   of   earlier,   logic-based   AI  
programming   languages.   I   think   we   need   to   try   to   find   simple,   teachable   abstractions   for   programmable  
inference,   that   help   future   users   of   probabilistic   programming   visualize   how   the   inference   process   unfolds,   and  
how   it   depends   on   the   generative   process   in   the   underlying   model.   It's   especially   important   for   users   to   be   able   to  
predict   how   much   runtime   and   memory   individual   inference   operations   will   consume.   If,   instead,   we   offer   our  
users   black-box   "declarative"   systems,   I   think   they   may   be   too   hard   for   non-experts   to   learn.  
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