Specifying Type Systems with
Multi-Level Order-Sorted Algebra'

Martin Erwig
FernUniversitat Hagen, Praktische Informatik IV
58084 Hagen, Germany

erwig@fernuni-hagen.de

Abstract

We propose to use order-sorted algebras (OSA) on multiple levels to describe
languages together with their type systems. It is demonstrated that even ad-
vanced aspects can be modeled, including, parametric polymorphism, complex
relationships between different sorts of an operation’s rank, the specification of a
variable number of parameters for operations, and type constructors using values
(and not only types) as arguments.

The basic idea is to use a signature to describe a type system where sorts
denote sets of type names and operations denote type constructors. The values
of an algebra for such a signature are then used as sorts of another signature now
describing a language having the previously defined type system. This way of
modeling is not restricted to two levels, and we will show useful applications of
three-level algebras.

1 Introduction

The concept of multi-level algebra (MLA) was initiated from our work on ex-
tending data models by new data types [2]. Although many-sorted algebra can
be conveniently used to describe non-standard data models many important
aspects remain unformalized. Even the generalization to OSA, though nicely
expressing subtypes and the notions of inheritance and overloading (Section
2), is not able to model the powerful concept of parametric polymorphism.
Parametric order-sorted algebra [4] offers a partial solution, but there are still
dependencies that cannot be expressed. For example, it is not clear, in general,
how to define a parametric module that is not allowed to accept an instance
of itself as a parameter. This is needed, for instance, to define a sequence con-
structor that is not allowed to be nested. In contrast, this is possible with two
levels of OSA which is demonstrated in Section 3. After introducing the notion
of lifting in Section 4 we will consider three-level algebras in Section 5. In Sec-
tion 6 we use the formalism developed thus far to specify type systems of data
models. Finally, concluding remarks and a comparison with other approaches
is given in Section 7.

tIn: 3rd Int. Conf. on Algebraic Methodology and Software Technology, Springer, 1993, pp. 177-184.

2 Order-Sorted Algebra: Modeling Subtype
Polymorphism and Overloading

An operation symbol that is used to denote different functions is said to be
overloaded. When these functions are only loosely related, this is also called
ad hoc polymorphism. On the other hand, the types on which the different
functions operate may be related by subtyping, i.e., one argument type is a
subset of another argument type for the same operation symbol. Then, no
matter which function is taken, an application (whenever this makes sense) for
one argument always yields the same result.! Such a situation is called subtype
polymorphism. If a function is applicable to a class of types without needing to
know the exact extent or structure of any type, this is an example of parametric
polymorphism. This includes the identity function (applicable to all types) and
the length function (applicable to all sequences). The code for such functions
is independent of the type parameter since it does not inspect objects of that
type.

For standard definitions of OSA refer to [3]. Now, consider the following
signature (on the left) for the polymorphic operation +.

types nat, int types nat, int

order nat < int order nat < int

funs 0: — int funs 0: — nat
0: — nat +:int X int — int
+:int X int — int +: nat x nat — nat
+: int X nat — int
+: nat x int — int
+: nat X nat — nat

Even this small example indicates that repeating an operation with many dif-
ferent ranks may become very cumbersome. Instead, it would be nice to define
an operation with a “high” rank (with respect to the subtype order <) once
and let the lower ranks be inferred automatically. This can be achieved by
using a signature specification (shown on the right).

Definition 1 Any order-sorted signature (S, <, X)) is at the same time a signa-
ture specification. The induced signature (S, <, IND(X)) is defined by IND(X) =
TU{owrs |Fo €Ty (W' <wAVoeX, o w <w=uw <uw")} |

Using signature specifications means to factorize operations’ types along a <-
chain of their arguments. The induced signature amounts to a feature which is
termed inheritance in object-oriented languages.

Now suppose we have to define an operation “<” on numbers and strings
(which are assumed to be not related by <). One approach is to give each
signature entry separately. This becomes tedious as the number of data types
for which “<” is defined grows. So it is much more convenient to group all the

1For example, the + operation is defined on IN and IR. Formally, we have two different functions +py
and 4, but their behavior is identical on INNIR.

sorts in a kind [1], e.g., ORD = {nat,int,str}, and then to define all signature
entries by a type scheme:

VY ord € ORD. <: ord x ord — bool

Apart from saving space, this notation is more descriptive w.r.t. the language
being defined since the overloading of “<” is not “scattered” over different
places in the signature. To use such type schemes in signatures we need the
notion of an extended signature specification. Therefore, let K be the set of
kinds where a kind is a set of sorts. The idea is to allow kind variables to be
used like sorts in signatures.

Definition 2 Given aset of sorts S and a kind-sorted family Y = {Y; | k € K}
of disjoint sets of variables, an Y-extended signature specification is an order-
sorted signature (S, <,X¥) with S’ = SUY and < C S’ x S’. The induced
signature (S', IND(L), IND(X)) is defined by?
IND(YX)={ow s | Fo€Xy s (W,s) =[s"/yl(w,s) Ny € Yy As” € k}
IND(L)={(s",t") | (s,t) e <: () =[s"/yl(s,t) Ny e Yr As" €k} O

Note that we now have two levels of signature specification available, i.e., the
order-sorted signature induced by an extended signature specification can again
be regarded as a signature specification (in the sense of Definition 1) which itself
induces an order-sorted signature.

We observe that the < order relates types in a way that induces kinds
similarly to the above example: FEach type s defines a kind SUB; which contains
s and all subtypes (with respect to <) of s. Subtype polymorphism can then
be expressed by using kind variables ranging over such SUB kinds, or, to put
it in other words, we could, in principle, define OSA in terms of many-sorted
algebra plus an appropriate kind structure.

3 Two-Level Algebra: Describing Parametric
Polymorphism and Type Constructors

A type constructor takes one or more types as arguments and produces a new
type as result. The sequence constructor (seq), e.g., takes a type, say, int, and
produces the type containing all sequences of integers. Of course, seq may be
applied to other types as well, but in some languages where nested sequences
are not allowed (for instance, database languages) it must not be applied to
sequence types. In that case, the argument types for seq are a proper subset
of all types and can be grouped into an appropriate kind. Similarly, the result
types form a kind, too.

We can regard kinds and type constructors as sorts and operations, respec-
tively, of an order-sorted signature. The example of unnested sequences can
then be expressed as shown below (nesting of sequences could be allowed by

simply defining SEQ < ARG).

2The notation [s/y]t denotes the substitution of all occurrences of the variable y in t by s.

typesystem UNNESTED language LisTs

kinds ARG, SEQ types from UNNESTED
tcons int, str, bool: — ARG funs nil: — seq
seq: ARG — SEQ cons: arg x seq(arg) — seq(arg)

hd: seq(arg) — aryg

tl: seq(arg) — seq(aryg)
length: seq — int

Note that “Y seq € SEQ. seq” denotes the same types as “V arg € ARG.
seq(arg)”. Thus, we can use seq in the type specifications for nil and length
since we do not need to refer to the argument type of the respective sequences.

Also note carefully that type expressions containing variables like seq are
not types themselves, but simply specifications of sets of types. One impact is
that expressions like nil or cons(nil, nil) are not type-correct since the type of
the overloading of nil cannot be resolved. This situation is called predicative
polymorphism [10] and is certainly a somewhat restricted form of parametric
polymorphism. The good thing about it is that we can have set-theoretical
models, which is not true for more general forms of polymorphism.

The signature UNNESTED defines merely the typing of type constructors.
The semantics usually consists of two parts: On the one hand, algebraic prop-
erties of type constructors can be specified by equations (for instance, associa-
tivity of a product operator). The set of sorts is then taken modulo such a
specification (in our example this was not necessary). On the other hand, the
effects of type constructors on the carrier sets need to be given by additional
functions.

Definition 3 An order-sorted signature is a 1%-level signature, and an order-
sorted algebra is a 15°-level algebra. Given an n'-level signature (S', <’, %)
and an n'-level Y/-algebra B, an order sorted signature (S, <,X) is an n + 1°-
level signature depending on ¥’ and B if S = [J, g sB. A Y-algebra A is
an n + 15°-level algebra if for each o, ; € X' there is a functor 7, ; (called
type constructor) and if for each s € S such that s = aijs(tl, ..y ty) (with

w=s...5, and t; € sZ for 1 < i < n) we have sA = Ewys(tf,...,tﬁ). The
functions @, s define the constructor semantics for ¥/, and A depends on (the
higher level) B and the constructor semantics for X'. a

Note that the individual algebra levels are denoted by counting backwards (with
regard to the construction history), i.e., an n + 15°-level algebra .4 depending
on the n'M-level algebra B is said to be on the first level whereas B is said to be
on second level, etc.. In particular, when ¥’ is used to describe types, we also
say that ¥/ is on type level and ¥ is on language level. In the following we will
always work with term algebras, i.e., we have, e.g., ORD? = {nat,...}.

The constructor semantics for the seq constructor is defined by:

seq(s)4 = sEq(s4) = (s4)"

4 Algebra Lifting

All type constructors presented so far have built new types from other types.
But there are some type constructors that are also based on values. The array
constructor, e.g., takes in addition to the component type two values of a scalar
type. Other examples are constructors for fixed length strings or subranges.

In order to retain the clear separation of the kind/type/value levels Cardelli
[1] proposes to “lift” values onto the type level. For instance, introduce for each
value n € nat a new type n with the carrier being n* = {n}. Moreover, create a
new kind, nat, with nat® = {n | n € nat*}. Then array can be used exclusively
on the type level, as in array(1, 9, bool).

Let X7 denote the set of type constructors that need lifted types. In order
to specify a type system and a language using X} the following steps have to
be performed (for a two-level algebra):

(i) Define the type system without X} . Call the signature 3.

(ii) Define Xg, the part of the language not needing types constructed by X7 .
iii) Perform lifting of £f and Xg, and add X} to Xf, i.e., let &' = X U X7,
iv) Finally, define ¥ with regard to ¥'. - -

We can specify X together with ¥y in one step. Thus, array is defined by:3

typesystem ARRAYS
kinds ARR, ANY
order ARR < ANY
tcons nat, int, str, bool: — ANY
array: nat x nat x ANY — ARR

The constructor semantics is given by:
array(n, m, t)*4 = array(n#, m*,t4) = armay({n}, {m},t*) = {n,...,m} — t4
Array operations can be defined by (assume quantifications “V n,m € nat”):

types from ARRAYS
order nat < int
funs newarray: nat x nat x any — array(n, m, any)
select: array(n, m, any) x nat — any
update: array(n, m, any) x nat x any — array(n,m, any)

Note that with the above definition range checking (for select/update) is not
expressible on the type level since an expression select(newarray(1,9,true),15) is
type correct w.r.t. to the above signature. This can be remedied by using three
levels of algebras. Another application of lifting arises in the modeling of oper-
ations with a variable numbers of parameters. Note that lifting of operations
is also conceivable. Then type constructors taking predicates and denoting
subtypes w.r.t. theses predicates can be defined.

3We do not list lifted kinds explicitly.

5 Three-Level Algebras

Consider the function [] for constructing sequences, which is defined for an
arbitrary number of arguments. The signature entries are:

[]: — seq

[]: arg — seq(arg)
[]: arg x arg — seq(arg)

To denote these signature entries we need for each argument type ¢ a kind
containing all product types over ¢. This can be achieved as follows: We define a
kind constructor list (this is an operation on level three with the same semantics
as seq). Now, list(K) denotes for a kind K all sequences of sorts from K. If, e.g.,
KB, = {nat}*, the quantification “V natlist € list(Kpna)” binds the sequences
(), (nat), (nat,nat), ... to natlist. The desired product types can be obtained
by “inserting” a “x” type constructor between each two adjacent types in a
sort sequence. This is done by the higher order function fold:

(7, () y
fold(a, (t1)) =t
fold(o, (t1,12,...,tn)) = o(t1,fold(c, (ta, ..., ts)))
Now the type of [] (for nat-sequences only) can be specified by:
[]: fold(x, natlist) — seq(nat)

A more precise account of this kind of specification requires higher order alge-
bras [8] and lifting on higher levels. Finally, for the convenient specification of
multi-level algebras we need a language that allows for the use of terms of all
levels in the definition of operations’ ranks. This is covered in the long version
of this paper.

6 Specifying Data Models

A relation is a set of tuples, and the components of the tuples each have a fixed
type and are named. In the “flat” relational model, relations are built only over
atomic types, whereas in the NF? model tuples may contain whole relations.
The relational model demonstrates the use of two languages on different levels:

(i) The first is the language of schemas, or, tuple types. A schema is a type,
and we have operations on schemas (i.e., type constructors), such as adding
an identifier/type pair or merging two schemas. Another type constructor
builds relation types from schemas.

(ii) The second language is that of relational algebra working on relations that
are instances of relation types. Operations on relations, such as natjoin or
select, belong to the language level.

The following type system defines the operations on schemas and, of course, the
rel constructor. The fun constructor will be needed for selection expressions.

4 Kyat can be obtained by lifting.

typesystem RELMODEL
kinds TUP, REL, ATOM, FUN
tcons null: — TUP
int, str,bool: — ATOM
add: str x ATOM x TUP — TUP
merge: TUP x TUP — TUP
mix: TUP x TUP — TUP
names: TUP — list(str)
rel: TUP — REL
fun: TUP x bool — FUN

Note that we use lifted strings as identifiers in tuples. add, merge, and mix are
type constructors which will be used on the language level to perform pattern
matching on relational schemas, and names yields the sequence of identifiers of
a tuple.

As it stands, the structure of schemas is specified only very loosely. This
would be sufficient as long as we considered only schemas (in fact, the construc-
tor semantics for schema type constructors is not really needed since schemas
are used on the language level only to build relations over them). However,
being faced with the need to describe the constructor semantics of rel it is very
helpful to fix a concrete representation for schemas, in particular, it is conve-
nient to think of a schema as a sequence of (identifier, type name) pairs. This
can be done by introducing on the third level a kind constructor schema which
is defined to provide just this representation (see full paper). For now we just
presume that representation of schemas. We have:

((i1,t1), oo, (i, t))A =0 x it x o oxid <t

Now we can assign a constructor semantics to rel.

— JA 4 A JA 4 A
rel(((i1,11), . - -, (in, tn)))2 = rel(ift x t£ x ... x i x tA) = 201 ¥ xxipixiy

With the auxiliary function isect we can give the following definitions for the
remaining type constructors.

isect(s,s') = {(i,a’) € ¢’ | Ja : (i,a) € s)
add(i,t, s) = merge({(7,1)), s)
merge(s,s’) = s - (s — isect(s, s'))
mix(s, s') = merge(s, s’) - ((¢,a) | 3(i,a) € iseci(s,s"))
names(s) = (i | 3(i,a) € s)

(For simplicity we assume in the definition of mix that i’ does not occur as an
identifier in s or s’. Since i is a lifted string, say, s, we can think of i’ as a
suitable renaming of s, say, s’, resulting in s’.)

Finally, we can define the language of relational algebra (we only give oper-
ations on relations and omit, e.g., comparison operators). The function tuple is
needed to construct (one-tuple) relations from lifted strings and atomic values.

language RELALG

types from RELMODEL

funs tuple: tup — rel(tup)
union: rel x rel — rel
project: rel(merge(tup,, tup,)) x names(tup,) — rel(tup,)
product: rel(tup;) x rel(tup,) — rel(mix(tup,, tup,))
natjoin: rel(tup,) x rel(tup,) — rel(merge(tup,, tup,))
select: rel(tup) x fun(tup, bool) — rel(tup)
attrib: add(str, atom, tup) x str — atom

The definition of an NF? model [14] can be obtained by simply adding an order
specification REL < ATOM to the type system. This means that attributes
need not be atomic values any more. Otherwise, type system and language
require no changes.

The two operations nest and unnest are defined by:

funs nest: names(tup,) x str x rel(merge(tup,, tup,))
— rel(add(str, rel(tup,), tup,))
unnest: rel(add(str, rel(tup,), tup,)) x str — rel(mix(tup,, tup,))

Note how nicely these typings reflect the fact that unnest is the inverse operation
of nest.

7 Conclusions and Related Work

Two-level algebras were already used in [13] to specify categories with certain
properties for theoretical investigation and in [7] for the formalization of the
composition of specifications. Meinke [9] gives a categorical semantics for two-
level specifications. In contrast, our concern is the specification of type systems,
more specifically, the formal description of data models and query languages.
Unlike [13, 7, 9] MLA is not limited to two levels, and we have indicated
that especially a third level can be extremely helpful: One usage is to describe
overloading of operations with functions on different numbers of parameters.
Another application is the generalization of certain type constructors (e.g., the
definition of an array type constructor not only for a fixed index type but for
a class of scalar index types). In some cases this also results in sharper type
descriptions (the generalized array definition prevents out-of-range errors).
Another difference between [13, 7] and our work is that we employ more
than only one sort on level two. This is necessary, for instance, to facilitate the
description of a type constructor for unnested sequences.
Focusing on two levels and ignoring extensions, such as lifting, the work in
[9] is in a sense more general than MLA since the first level (called “combinator
signature”) is fully parameterized by a second level whereas in MLA, a second
level is fixed and a first level is constructed w.r.t. such a fixed second level; the
dependency is “encapsulated” by construction. The advantage of our approach
is that theorems which have to be proved in [9] are trivially true in MLA.
Finally, let us summarize some points counting in favor of using MLA and
exhibiting its scope.

— All kinds of polymorphism (subtype, ad hoc, parametric) are describable
within one formalism.

— Type systems can be easily extended by new structures. This is important
to meet changing requirements of new applications.

— The definition of properties of type constructors (e.g., associativity) is sep-
arated from the constructor semantics.

— Recently, general approaches to the type checking of languages that use
overloading in a systematic way have become available [11, 6, 12]. In many
cases these methods are directly applicable to languages defined by MLA.

References

[1] L. Cardelli. Types for Data Oriented Languages. In Conf. on Eztending Database
Technology, LNCS 303, pp. 1-15, 1988.

[2] M. Erwig and R. H. Giiting. Explicit Graphsin a Functional Model for Spatial Databases.
Report 110, FernUniversitat Hagen, 1991.

[3] M. Gogolla. Partially Ordered Sorts in Algebraic Specifications. In 9th Coll. on Trees
in Algebra and Programming, pp. 139-153, 1984.

[4] J. A. Goguen. Higher-Order Functions Considered Unnecessary for Higher-Order Pro-
gramming. In D. A. Turner, ed., Research Topics in Functional Programming, pp.
309-352. Addison-Wesley, 1990.

[5] J. A. Goguen and J. Meseguer. Order-Sorted Algebra I. Report, SRI Int., 1989.

[6] S. Kaes. Type Inference in the Presence of Overloading, Subtyping and Recursive Types.
In ACM Conf. on Lisp and Functional Programming, pp. 193-204, 1992.

[7] J. Leszczylowski and M. Wirsing. Polymorphism, Parameterization and Typing: An
Algebraic Specification Perspective. In STACS 91, LNCS 480, pp. 1-15, 1991.

[8] K. Meinke. Universal Algebra in Higher Types. In Workshop on Specification of Abstract
Data Types, LNCS 534, pp. 185-203, 1990.

[9] K. Meinke. Equational Specification of Abstract Types and Combinators. In 5th Work-
shop on Computer Science Logic, LNCS 626, pp. 257271, 1991.

[10] J. C. Mitchell. Type Systems for Programming Languages. In J. van Leeuwen, ed.,
Handbook of Theoretical Computer Science, Vol. B, pp. 367-458. Elsevier, 1990.

[11] T. Nipkow and C. Prehofer. Type Checking Type Classes. In ACM Symp. on Principles
of Programming Languages, pp. 409-418, 1993.

[12] T. Nipkow and G. Snelting. Type Classes and Overloading Resolution via Order-Sorted
Unification. In Conf. on Func. Progr. and Comp. Arch., LNCS 523, pp. 1-14, 1991.
[13] A. Poigné. On Specifications, Theories, and Models with Higher Types. Information

and Control, 68:1-46, 1986.
[14] H.-J. Schek and M. H. Scholl. The Relational Model with Relation-Valued Attributes.
Information Systems, 11:137-147, 1986.

