Functional Programming with Graphs

Martin Erwig
FernUniversitat Hagen, Praktische Informatik IV
58084 Hagen, Germany
erwig@fernuni-hagen.de

Abstract

Graph algorithms expressed in functional languages often
suffer from their inherited imperative, state-based style. In
particular, this impedes formal program manipulation. We
show how to model persistent graphs in functional languages
by graph constructors. This provides a decompositional
view of graphs which is very close to that of data types
and leads to a “more functional” formulation of graph algo-
rithms. Graph constructors enable the definition of general
fold operations for graphs. We present a promotion theo-
rem for one of these folds that allows program fusion and
the elimination of intermediate results. Fusion is not re-
stricted to the elimination of tree-like structures, and we
prove another theorem that facilitates the elimination of in-
termediate graphs. We describe an ML-implementation of
persistent graphs which efficiently supports the presented
fold operators. For example, depth-first-search expressed
by a fold over a functional graph has the same complexity
as the corresponding imperative algorithm.

1 Introduction

Traditionally, most graph algorithms are formulated in an
imperative manner, for example, in depth-first search, nodes
are marked as being visited to prevent repetitive traversal.
Most often, this imperative style is carried over when imple-
menting graph algorithms in functional languages, for ex-
ample, a set of visited nodes is threaded through successive
function calls. Although this strategy can keep programs
free of imperative updates, the state-based, imperative algo-
rithm is still present, just in functional disguise. However, in
order to find program transformations like in the unfold/fold
approach or in the Bird/Meertens formalism, an integration
in a truly functional style is needed. We follow Richard Bird
who recently concluded [3]:

But if we remain within a functional formalism, then
we need to reformulate standard algorithms |[...]

The treatment of graphs in functional languages has now
been addressed in quite different ways [4, 13, 7, 14], but

In: 2nd ACM SIGPLAN Conference on Functional
Programming, Amsterdam, 1997

62

there is no accepted “standard” yet. We believe that one
reason for this situation is that the integration often suffers
from the inherited imperative style.

This has to be seen in contrast to tree-like structures
that can be directly represented by data types which present
themselves rather uniformly across different functional lan-
guages: the notions of data type, constructor, pattern and
pattern matching are well-known and they are present in
almost all modern functional languages. Research on gener-
alized fold operations, also called catamorphisms, [18, 22, 10]
has (among other things) produced far-reaching opportuni-
ties for program transformations. In particular, the fusion
of multi-pass algorithms [17, 24, 16, 12] is a profitable opti-
mization technique.

Now it is challenging to reach a comparable status for
graphs and graph algorithms. At this point one might object
that graphs are application-specific structures rather than
a programming language concept, and they should there-
fore be implemented by means of language features already
present. Even if this is true, it is nonetheless important to
have a uniform comprehension of graphs together with a cor-
responding programming style to facilitate program trans-
formation and optimization as it is known from data types.

This paper suggests a (de)compositional view of graphs
which is very close to that of data types. This gives a new
flavor of defining graph algorithms and clears the way for
defining general fold operations on graphs. We show how to
define graph algorithms in terms of graph folds and how this
facilitates program transformations and optimizations. An
integration of the proposed concept into a functional lan-
guage requires as its backbone an implementation of func-
tional, or persistent, graphs. We have implemented func-
tional graphs together with graph folds in ML, providing
efficient implementations for graph operations like depth-
first-search.

There are two ways to achieve such an integration: First,
as a language extension. This allows the optimizations de-
scribed in Section 6 to be used by a compiler, and it pro-
vides a convenient way of pattern matching (Section 4) to
the user. On the other hand, it is not reasonable to expect
a compiler to provide all the different graph representation
that are needed to efficiently deal with graphs in specific
situations. Second, by providing a graph library. With this
approach it is much easier to provide (and extend) different
graph implementations. We follow the latter approach since
it seems to be more promising, but for the convenient pre-
sentation of examples in this paper we assume having the
pattern matching capability available.

| 4 | 3 | [M | [4 | [10] | This paper
generality yes yes no (yes) no yes
efficiency no no yes yes no yes
pureness yes yes yes no yes yes
clearness no (yes) yes yes yes yes
reasoning no no no (yes) yes yes

Figure 1: Treatment of graphs in functional languages.

2 Related Work

In [4] the state used by graph algorithms is simulated by
functional arrays that are threaded through function calls.
It is shown how to directly transfer classical algorithms into
a lazy functional language, but no particular use of func-
tional languages is made in the design of the algorithms
themselves.

In contrast, in [13] algorithms are described as fixed
points of recursive equations which essentially relies on lazy
evaluation. Though being “more functional”, the algorithms
become quite complex and are rather difficult to compre-
hend. Both approaches do not achieve the asymptotic run-
time of imperative algorithms.

In [7] we have identified some classes of graph algorithms
and have introduced a few corresponding predefined oper-
ators. A graph algorithm is realized by simply providing
an operator with some parameter functions and data struc-
tures. We believe that the approach reflects the structure
of graph algorithms very well. However, like the previous
two approaches there is not much potential for formal pro-
gram manipulation. Moreover, the operator approach lacks
generality.

In the proposal of [14] the focus is on a generated data
structure, the depth-first spanning forest, instead of the un-
derlying graph algorithm. This facilitates formal reasoning,
in particular, the formal development of many algorithms
based on depth-first search (dfs) becomes possible. More-
over, Launchbury shows in [15] how phase fusion can be
applied to eliminate intermediate results of some of these
algorithms. The dfs function itself is realized nicely in a
generate-and-prune manner. Monads are used to implement
the state maintained during dfs (that is, the vertices visited)
to achieve linear running time. At this point the approach
is stuck with the imperative programming style. Although
encapsulated and restricted to a single point, it comes up
in the process of program fusion where transformations be-
come quite complex when functions are moved across state
transformers. As yet the approach applies just to dfs.

Fegaras and Sheard investigate in [10] a generalization
of fold operations to data types with embedded functions.
As one motivating example they show how to model graphs.
However, that approach is somewhat limited (it is not clear
how to define, for example, a function for reversing all edges
in a graph) and it lacks efficiency since direct access to a
node requires, in general, traversal of the whole graph.

Also related is the work of Gibbons [11] who considers
the definition of graph fold operations within an algebraic
framework. But he deals only with acyclic graphs, and an
implementation is not discussed, so that his approach is cur-
rently not usable. A summary of the preceding comparison
is shown in Figure 1.

63

In the next section we define graph constructors and
show their use in building directed graphs. In Section 4
we describe a special kind of pattern matching for graphs.
Section 5 presents some fold operations. Two theorems are
given in Section 6 to demonstrate the optimization of graph
algorithms by simple program transformations. The imple-
mentation is described in Section 7, and some conclusions
follow in Section 8.

3 A Model of Directed Graphs

We propose a (de)compositional view of graphs in the style
of algebraic data types found in languages like ML or
Haskell: a graph is either empty, or it is constructed by a
graph G and a new node v together with edges from v to its
successors in G and edges from its predecessors in G leading
to v. This view is closely related to an adjacency represen-
tation of graphs. The main difference to data types is that
predecessors are mentioned explicitly. We present our ideas
in terms of ML, but a translation to other languages is not
difficult.

3.1

There are quite different kinds of graphs, and it is almost
impossible to capture all aspects in a single type. Therefore
we focus in the following on directed, node-labeled multi-
graphs. This, on the one hand, includes some non-trivial
aspects, such as multiple edges between two nodes, and, on
the other hand leaves out other details, for example, edge
labels, that would only make examples longer and more dif-
ficult to read. Adaption to other graphs types is straightfor-
ward. The constructive view of graphs suggests the following
two constructors:

Graph Constructors

Empty: ’a graph
&: ’a context * ’a graph -> ’a graph

The type parameter ’a gives the type of node labels. Distin-
guishing between nodes and node labels is necessary when-
ever different nodes may have the same label, see Figure
2. (This example also shows the need for multiple edges
between two nodes.)

The context of a node is the node itself together with its
label and the lists of its predecessors (first component) and
its successors (last component):

type ’a context =
node list * node * ’a * node list

The requirements on the type node are given by the signa-
ture below. In particular, we have to create node values
before we can build a graph. This is done by the gen func-
tion that generates any requested number of different nodes.

sig
eqtype node
val gen : int -> node list
val new : node list -> node
end

In the subsequent examples we will use the following nodes:
val [A,B,C,D] = gen 4.

The function new creates a node that is not contained in a
given list of nodes. This function is useful when extending a
graph whose construction history is not known since we need
a node value not already contained in the graph. However,
to apply new we have to extract the nodes of a graph. This
is done by the function nodes:
val nodes: ’a graph -> node list
As an example, we construct a cycle of three nodes and
extend it by a node with an edge to some node of the cycle.

([cl,A,1,[B]) & ([1,B,2,[C]) &
(00,c,3,0) & Empty

let val N = nodes cyc

in ([],new N,4,[hd N]) & cyc end

val cyc =

The DAG for the expression 1+ (2+2) and a graph expres-
sion for it are shown in Figure 2.

®
@/\(@
@)

datatype int_expr = CON of int
| OP of int * int -> int

~—

val exprDag =
([1,D,0P (op +),[B,C1) &
(f1,c,con 1,[1) & ([1,B,0P (op +),[A,A]) &
([0,A,coN 2,[1) & Empty

Figure 2: A DAG and its graph expression.

3.2 Semantics of Graph Constructors

A graph G = (V, E,v) of type « consists of a set of nodes
V, a multiset (or, bag) of edges E € M(V x V), and a total
mapping v : V — « defining the node labels. Representing
the edges of a graph as a bag of node pairs accounts for
multiple edges between two nodes.

The semantics of the above graph constructors with re-
spect to this graph model is given by inference rules as used

64

in the definition of Standard ML [19], see Figure 3: an as-
sertion p e = v says that expression e evaluates in the
environment p to the value v. For simplicity, we assume
having bags as semantic values, and we denote a bag by
writing a sequence of its elements, that is, (x1,...,Z») or
T, for short, disregarding the order of elements. The union
of two bags is written like the concatenation of two lists L
and L' by L- L'.

The last two rules describe exceptional situations: trying
to add a context for an already existing node results in a
Node exception. Likewise, trying to add an edge between
non-existing nodes raises an Edge exception. (Note that
adding a tuple (v,w) to the edge bag of a graph means
not only that w is a successor of v, but also that v is a
predecessor of w.)

It is not difficult to define two functions addnode and
addedge for adding a single node (without predecessors and
successors) and a single edge (between two nodes that are
known to be already contained in the graph):

fun
fun

addnode (v,1) g = ([1,v,1,[1) & g
addedge (v,w) ((p,u,l,s) & g) =
if u=v then (p,u,l,w::s) & g else
if u=w then (v::p,u,l,s) & g
else (p,u,1l,s) & (addedge (v,w) g)

These can be used to build any graph by first inserting all
nodes and after that inserting all edges. Hence we know:

Theorem 1 (Completeness)
Any node-labeled multi-graph can be represented by a graph
eTpression. O

4 Pattern Matching on Graphs

Regarding the free term algebra generated by Empty and
&, pattern matching is the same as with other data types.
For example, we can define a function gmap for mapping a
function to all node labels of a graph:

fun gmap f Empty = Empty
| gmap £ ((p,v,l,s) & g) =
(p,v,f 1,s) & (gmap f g)

The semantics of graphs, however, suggests that some dis-
tinct graphs should be regarded as equal. In particular,
many function definitions become more convenient when a
kind of pattern matching could be used that abstracts away
the order of node/edge insertions. Consider, for example,
functions suc and del for selecting the successors of node v
in a graph g, respectively, for deleting v from g. Function
definitions get remarkably simple when node v is inserted
last into g, that is, g = (p,v,1,s) & g’: then we can sim-
ply return s, respectively, g’ as result. It is an immediate
corollary of Theorem 1 that we can always reorganize g to
obtain the term above, since for any graph g we can always
find a term for a graph g’ with a specific node v (and inci-
dent edges) removed, so that g can be obtained by inserting
v together with its incident edges into g’.

Miranda laws and the views mechanism proposed by
Wadler [23] allow pattern matching on non-free algebraic
data types by mapping data type terms to canonical rep-
resentations. For our purposes instead of mapping to a

p F Empty = (0, (),0)
prg= (V,E,v) ptp=Dn pFv=w pF1=1 pks=75,
vg V. UL) CVUf) R (s} C(VU{R)
pF(,v,1,8) & g= (VU{v},E-((p1,v),...,(Pn,v), (v;81),...,(v,8m)),v U{(v,])})

prg= (V,E,v)

prv=w

veV

pF (p,v,1,s) & g= [Node]

pFg= (V,E,v) pFEp=Dpn prv=w

pFs=75n,

Uim {pid WU {s:}) € (VU {o})

pk (p,v,1,8) & g = [Edge]

Figure 3: Semantics of graph constructors.

canonical representation we rather need to select a spe-
cific representation (among several equivalent) via a pat-
tern, namely one with a certain node inserted last. With the
above graph semantics we can easily define such a pattern
as a language primitive. We write an environment map-
ping variables T, to values T, as {z1— v1,...,Zn “> Un},
and an assertion p,v F p = p' says that pattern p matched
against value v in the environment p results in the bind-
ing(s) (that is, variable environment) p’ [19]. Let G =
(Vvv E - ((’U, 31)7 LR (Uv Sn)v (plav)v (R (pmu ’U)),l/ U {(’U, l)})
Then:

pEv=w
p,GF (p,v,1,8) & g=
{smsp—pm 1l lg— (V- {v},Ev)}

This rule says that the unbound variables p, 1, and s of
the pattern are bound to the corresponding values of v’s
context. If v ¢ V, a special semantic object FAIL is re-
turned [19]. FAIL is not a value, its only purpose is to
direct pattern matching to the next case. If the last case
returns FAIL, a Match exception is raised. The notation
in the rule assumes that n and m are chosen maximally,
that is, all edges incident to v are selected. Moreover, writ-
ing successors preceding predecessors in the above edge list
matches self loops as successor-based, that is, matching the
pattern (p,A,1,s) & g to the expression ([A],A,1,[]) &
Empty binds node A in list s even though it was placed in the
predecessor list. One could think of binding A in both lists,
s and p, but this would contradict the intuition that the rule
(p,A,1,s) & g => (p,A,1,s) & g denotes the identity on
graphs. To see this consider the application to a graph con-
sisting of just one node with an edge to itself. If A were
bound in p and s, the result expression would add two self
loops to A.

As another example, consider matching ((p,B,1,s) &
g) to the expression exprDag. We get 1 = op +, p = [D], s

= [A,A], and g = %@ (2). Thus we can define

suc and del by:

fun suc v ((p,v,1l,s

) &g =s
fun del v ((p,v,1,s)

&
&g =g

Since the described pattern matching process not only com-
putes bindings, but also performs an implicit reorganization
of the matched value, we call & an active pattern. Note that
this is not possible with laws/views (since computation is
guided by external values, that is, from the outside of the

65

pattern); in [21] a similar feature is described for n + k-
patterns in Haskell.

The use of active patterns is actually not restricted to
graphs, and it is an interesting language concept in its own
right with many subtleties (the reader might have noticed
the non-linear patterns), for further details see [8]. We do
not require & as a language extension, instead we can always
replace a function definition
fun £ ... v ... ((p,v,1,s) & g) =
by using a predefined operation context for computing a
node’s context:

fun £ ... v ... g’ =
let val ((p,v,1,s) & g) = context (v,g’)
in e end

The translation of active patterns in the general case when
a function has more than one rule can be found in [8].

In the sequel, however, we keep using the active pattern
& for syntactic convenience.

5 Graph Folding

Whereas for data types the fold operation has a canonical
form, reducing graphs can be done in quite different ways.

5.1 TUnordered Fold

A first approach is to define graph folding in strong
analogy to data types, that is, given a binary function
f : ’a context * ’b -> ’b, unordered fold is defined:

fun ufold f u Empty =1
| ufold f u (c & g) = £ (c,ufold f u g)

Note that we do not use the active pattern & We can employ
ufold to implement some basic functions, such as reversing
edges, the function gmap from above, or testing node mem-
bership:

val grev =

ufold (fn ((p,v,1,s),g)=>(s,v,1,p) & g) Empty
fun gmap f =

ufold (fn ((p,v,1,s),g)=>(p,v,f 1,s) & g) Empty

fun gmember v =
ufold (fn ((_,w,_,_),b)=>v=w orelse b) false

However, the scope of ufold is somewhat limited. This is
mainly because we have no control about the order of graph
decomposition, but this actually seems to be of high impor-
tance to many graph algorithms (already indicated by their
name: depth-first, breadth-first, best-first, etc.).

5.2 Linear Graph Fold

When folding a data type value one always moves “forward”
from the current constructor (node) to the contained values
(that is, successors). In contrast, the graph constructor &
also provides access to a node’s predecessors. So we have to
determine the fold direction within the fold operator. We
do this by a parameter function f, computing from a node’s
context the list of nodes (1) which are to be accessed, that
is, folded, next. Two such functions which will be used in
the sequel direct fold to the successors, respectively, prede-
Cessors:

fun fwd (p,v,1,s) = s
fun bwd (p,v,1,s)

Now fold operates on a node v in two steps: first, fold is
recursively applied to the list of nodes, 1, which is computed
by f from v’s context, yielding a list of results 1°. Since, in
general, the length of 1 is varying, the results in 1’ have to be
accumulated in some way. This is achieved by a parameter
function b which is (list-) folded along 1°, yielding a value
r. A further parameter function d is finally applied to lab
(the label of v) and r.

Another parameter is the “linearity” of nodes, that is,
whether a node value can be used only once in a compu-
tation or if it might be used multiple times (when reached,
for example, from different predecessors). We first consider
the former option: once we have matched a node context
(p,v,1,s) & g we proceed with just graph g, thus forget-
ting v. This is a bit dangerous since v might be tried to
be matched in g later (coming from a different predecessor)
thus causing a Match exception. Being aware of that fact,
however, we can recover from exceptions by giving meaning-
ful defaults. In fact, this is done in the following definition
of gfold. We first define two functions for performing fold
from just one node, respectively, from a list of nodes.

fun gfoldl fdbuv
((c as (_,v,1lab,_)) & g) =
let val (r,gl) = gfoldn f dbu (f c) g
in (d (lab,r),gl) end

and gfoldn _ _ _ u [1 g
| gfoldn £ d bu (v::1) g
let val (x,gl) = gfoldl
val (y,g2) = gfoldn

in (b (x,y),g2) end
handle Match => gfoldn f d bul g

(u,g)

H ol

dbuvg
dbulgl

In addition to the accumulated value, both functions have
as a result the reduced graph. Performing successive fold
calls always on these reduced graphs essentially ensures that
nodes are visited only once. In a sense, the graphs passed
around represent the progressive consumption of nodes from

66

the original graph. The exception handling in gfoldn cap-
tures the following case: when a node passed to gfoldn has
already been consumed by a recursive call to gfoldl at the
time it is to be processed, it causes a Match exception (in
gfoldl). In that case gfoldn simply takes the next node
in the list. (Those who do not like programming with ex-
ceptions might note that their use is not essential here. Al-
ternatively, we execute the second RHS of gfoldn only if
gmember v g is true, otherwise we call gfoldn f d b u 1
g.) Now gfold performs gfoldn and drops the graph result:

fun gfold fdbulg=#1 (gfoldn fdbul g

In essence, gfold fwd performs depth-first search on graphs.
As demonstrated in [14], many graph problems can be easily
solved by first computing a depth-first spanning tree of the
graph. So we show how to compute it with gfold. We will
represent trees of variable degree by the following data type:

datatype ’a tree = Branch of ’a * ’a tree list
Now, dfs is simply given by (with val Cons = op ::):
fun dfs 1 g = gfold fwd Branch Cons [] 1 g

This definition for depth-first search is very different from
the Haskell implementation presented in [14]. In particular,
the way of maintaining the dfs-state is distinctive: instead of
using state transformers, remembering already visited nodes
is implicit in the graph decomposition achieved by pattern
matching.! Note that we have deliberately omitted a case
like

fun gfoldl £ d b u v Empty = u

from the definition of gfold1 to obtain a more general typ-
ing. As gfold is actually of type

(’a context -> node list) ->
(’a * ’b => ’¢c) -> (°¢c * b => ’b) > ’b >
node list -> ’a graph -> ’b

adding the above case would result in a unification of ’b
with ’c entailing some effort to adjust definitions like that
of dfs. The similarity of gfold to dfs makes it the basis for
many graph algorithms. Since we can establish general laws
for gfold (see Section 6) graph algorithms become amenable
to program optimization.

Linear fold is different from fold on data types: there,
multiple threads to a value are possible via the use of sharing
variables. In a decomposition of a value containing multiple
threads, say, to a subvalue v, v is processed as many times
as there are threads leading to it. This is not the case for
gfold which processes just one thread.

5.3 Multiple Access Graph Fold

An obvious generalization of gfold is to allow for multiple
accesses to nodes which can be accomplished by re-inserting
the currently matched node v with only incoming edges (ex-
cept the one via which v is reached); multiple accesses to
the node are then possible through successor lists of other
nodes that have not been processed yet. Node sharing and

! Actually, these nodes are forgotten and not remembered.

loops (edges from a node to itself) require careful treatment
within the fold operator: when a node v is processed, that is,
a function d is applied to v’s label 1ab and a value r result-
ing from reducing the currently remaining graph, the result
d (lab,r) is not just returned as a value, but is also inserted
as v’s label into the graph to be reduced. This ensures that
the value is available at later stages of the reduction, and
it furthermore avoids its recomputation. This accounts for
nodes reached via more than one predecessor. When fold-
ing a node v that contains an edge to itself, v is among its
own successors, and eventually fold is applied to it. Thus,
v must be present in the argument graph passed to the re-
cursive fold call, that is, v must be re-inserted into g before
the recursive call with its original label 1ab and without any
predecessors and successors (this guarantees termination).

Since the result type of the fold is, in general, different
from the type of node labels we actually have to process
a heterogeneous graph where nodes labels are either tagged
SRC (not processed yet) or DEST (node carries a result value).
We therefore use the following union type:

datatype (’a,’b) hybrid = SRC of ’a | DEST of ’b

Now we can define the function mfold. In mfold1l we have to
remove in each step exactly one edge — the edge by which the
current node v was reached. We therefore have to pass as an
additional parameter the node z from which v was accessed.
Since there is no such node for any of the argument nodes
initially passed to mfold we use the option data type:
datatype ’a option = SOME of ’a | NONE

and apply the SOME constructor to parent nodes and pass a
nullary NONE to the initial call of mfoldn. (This also hides
the parameter from the interface of mfold.) For simplicity
we omit the parameter f (recall the definition of gfold)
and consider only a forward fold, that is, we always move
to successors. Thus, when reaching a node v with a DEST-
label, we can simply re-insert v with its current predecessors
except z.

fun mfoldl d b u (z,v) ((p,v,lab,s) & g) =
case lab of DEST w =>
(w, (drop z p,v,DEST w,[]1) & g)
| SRC w =>
let val (r,gl) = mfoldn d b u (SOME v,s)
(C[1,v,SRC w,[1) & &

val new =d (w,r)
in (new, (drop z p,v,DEST new,[]) & del v gl)
end
and mfoldn _ _ u (_,[1) g = (u,g)
| mfoldn d b u (z,v::1) g =
let val (x,gl) = mfoldl d b u (z,v) g
d

val (y,g2) = mfoldn
in (b (x,y),g2) end

bu (z,1) gl

(drop (SOME x) p removes one occurrence of the element x
from list p, and drop NONE p = p.) Now mfold first wraps
up the nodes of the graph with SRC, then reduces the graph
by means of mfoldn, and finally drops the graph part of the
result:

fun mfold d bul g =
#1 (mfoldn d b u (NONE,1) (gmap SRC g))

67

As an example, an evaluator for expression DAGs is given by
the function evalDag. (The expression filter p 1 selects
all elements of the list 1 for which the predicate p yields
true.)
fun pred v ((p,v,_,_) & _) =p
fun roots g = filter (fn v=>pred v g=[]) (nodes g)
fun evalNode (CON i,_) = i

| evalNode (OP f,[x,yl) = f (x,y)
fun evalDag g =

mfold evalNode Cons [] (roots g) g

It seems there are only few applications of mfold: there
must be a need to fold along all edges (folding along a span-
ning tree can be done with gfold), and the order of de-
composition must be important (otherwise ufold could be
used). However, some advanced examples can be found in
the translation of visual programs [9].

5.4 Graph Backtracking

By passing the very same graph to all recursive fold calls of
one successor list we obtain a backtracking operator:

fun backtrackl d b u v ((_,v,lab,s) & g) =
d (lab,backtrack d b u s (([1,v,1lab,[1) & g))

and backtrack d b u nil g = u
| backtrack d b u (v::1) g =
b (backtrackl d b u v g,backtrack d b u l g)

With backtrack we can compute, for example, all simple
paths in a graph (let val append = op Q):

fun conspaths (v,1) = map (fn p=>v::p) 1
fun pathsfrom s g =

backtrack conspaths append [nil] [s] g
fun allpaths g = fold append

(map (fn v=>pathsfrom v g) (nodes g)) []

(Actually, the list of paths returned by allpaths contains
|V|-times the empty path.)

6 Program Fusion

A popular optimization technique for functional languages
is to eliminate intermediate results of multi-pass algorithms.
Concerning graph algorithms, Launchbury [15] gives some
examples of how to fuse operations based on dfs.

The following theorem shows that program fusion also
applies to algorithms specified by graph folds. (The proof is
given in the Appendix.)

Theorem 2 (Promotion Theorem) IfM and N are func-
tions such that

M@ (x,y)) =e (x,N y)
N (b (x,y)) =f (M x,N y)
Nu=nu’
then:

N (gfold hdbulg) =gfoldhefu 1g

As an application example consider the definition of topo-
logical sorting as given in [14, 15]:

fun postorder (Branch (v,f)) = postorderf f @ [v]
and postorderf [] =[]
| postorderf (t::f) postorder t @ postorderf f
fun topsort g =

rev (postorderf (dfs (nodes g) g))

After unfolding the definition of dfs we can apply the pro-
motion theorem to obtain a version of topsort that does
not build an intermediate tree structure. First, we match
variables of the theorem: h = fwd, d = Branch, b = Cons, u
= [1, and N = rev o postorderf.

Next we have to invent values for the remaining variables:
e = Cons, f = fn (x,y)=>y0x (append first argument to
second), u’ = [1, and M = rev o postorder. Now we check
the premises of the theorem: it is clear that N u = [] =u’.
Moreover:

M d (x,y))

rev (postorder (Branch (x,y)))
rev (postorderf y @ [x]))

[x] @ (rev (postorderf y))
x::(rev o postorderf) y

e (x,N y)

N (b (x,y))

rev (postorderf (x::y))

rev (postorder x @ postorderf y))

rev (postorderf y) @ rev (postorder x)
(rev o postorderf) y @ (rev o postorder) x
f (M x,N y)

Thus we obtain the following optimized version of topsort:

fun topsort g = gfold fwd Cons (fn (x,y)=>y@x)
[1 (nodes g) g

Theorem 2 facilitates the elimination of intermediate tree
structures which certainly has many applications. Yet, it
is challenging to investigate unfold/fold transformations to
save intermediate graph structures, too; according to Wadler
[24] we could call this degraphation. As an example we
optimize the implementation of Sharir’s strongly-connected
components algorithm as given in [7, 14]:

fun scc g = dfs (rev (postorderf
(dfs (nodes g) g))) (grev g)

The algorithm works by performing dfs on a graph with
its edges reversed (grev g) while the argument node list of
the traversal must be a reverse postorder list of the graph’s
nodes (rev (postorderf ... g)). We can save the inter-
mediate graph resulting from the edge reversal by fusing the
definition of dfs with that of grev. To do this we use a du-
ality theorem that relates gfold fwd to gfold bwd. (The
proof can be found in the Appendix.)

Theorem 3 (Duality Theorem)
gfold fwd d b u 1 (grev g) =
gfold bud d bu l g

The application to the function scc gives (using the opti-
mized version of topsort):

fun scc g = gfold bwd Branch Cons []
(gfold fwd Cons (fn (x,y)=>yex) []
(nodes g) g) g

68

7 Implementation

We have implemented the proposed graph concept as an
extension of ML. At the core is a data structure for per-
sistent graphs, that is, graphs that are non-destructively
updated through applications of the & constructor and by
decomposition. To our knowledge, data structures for per-
sistent graphs have not been investigated previously [20].
(The method of [6] cannot be used since it applies only to
linked structures with nodes of constant bounded in-degree.)

Since, even for imperative graphs, no single graph repre-
sentation exists that is optimal for all kinds of applications,
we initially focus on a representation suited for sparse graphs
and base our implementation on node-indexed arrays of ad-
jacency lists. By using functional arrays we ensure that any
update to the graph does not invalidate older graph ver-
sions. We use the version tree implementation of functional
arrays [1] in which updates take constant time and index
access time depends on the depth of the version tree. Ex-
tending version trees by an (imperatively updated) “cache
array” that actually duplicates the array represented by the
leftmost node in the version tree, index access becomes O(1)
for single-threaded arrays.

Let us assume for a moment that we represent a graph by
three arrays L, S, and P storing node labels, successor and
predecessor lists. Then adding a node context (p,v,1,s) (of
size ¢) can be simply done by (i) setting the node label, (ii)
adding successors, and (iii) adding predecessors as follows:

(i) L[v]:=1
(ii) S[v]:==s andVu € p: S[u] :=v::S[u]
(iii) P[v]:=p and Vw € s : P[w] := v::Plw].

Thus, adding a node context takes O(c) steps plus the time
to locate all the lists S[u] and P[w]. In the worst case, this is
O(cu) where u denotes the number of updates to g. (Note
that u is generally not even bounded by the number of
edges.) However, in single-threaded graphs, an adjacency
list is found in O(1), so & is O(c).

Graph decomposition as requested by a match
(p,v,1,s) & gis, in general, more complex: not only must
we return v’s label, its successors and predecessors, we also
have to build the reduced graph resulting from the deletion
of context (p,v,1,s). To do this we delete v, and we remove
v from all successor (predecessor) lists of v’s predecessors
(successors), that is,

(i) L[v]:=L
(ii) Yu € p: Slu] := drop v S[y]
(ili) V w € s : P[w] := drop v Plw].

The costly operations are those in steps (ii) and (iii): we
have to find O(c) adjacency lists, which requires O(cu) steps
in general and O(c) steps in the single-threaded case. The
deletion of v takes O(c) time for each list. Thus, & is O(c*u)
in general and O(c?) in the single-threaded case.

We can improve this implementation by exploiting the
following observation: the deletion of a node in any adja-
cency list can be noticed at the earliest when that list is
requested by (another) context match. So in the implemen-
tation of & instead of removing v from adjacency lists, we
just mark v as deleted. (This is done in an additional array
V.) But now p and s cannot simply be bound to S[v] and
PJv], respectively, instead only those nodes are returned that
are not marked as deleted in V. This means that building

the reduced graph is O(1) and computing p, 1, and s now
takes O(u + c) steps (O(c) in the single-threaded case), and
this is also the complexity of & Even if this means a reduc-
tion in complexity only for non-sparse graphs, it is in any
case an important improvement in practice, since in addi-
tion to smaller constants within the big-Oh expressions, we
also save a lot of heap allocations.

There remains one problem with the proposed approach:
assume the context of node v is deleted and, for example,
S|[w] contains v. Now, if later on v is re-inserted without w as
one of its predecessors, then v still must not be considered
a successor of w. But this seems to be impossible since we
cannot mark v as deleted anymore. A solution is to equip
nodes with a kind of “time stamps”: when a node v is in-
serted the first time, it gets a stamp, say 1 (that is, we set
V[v] := 1) and we store this stamp with each entry in an
adjacency list. When v is removed, we set V[v] := —V|[v].
When accessing nodes in an adjacency list, we return only
those nodes whose stamps in the list are equal to that in
V. So deleted nodes will be filtered out. Now when re-
inserting v we set V[v] := —V|[v] + 1 so that “old” entries
in adjacency lists still have non-matching stamps and will
correctly be filtered out.

The importance of the structure lies in its behavior
on single-threaded graph decompositions:®> a function like
gfold has a running time of O(|V| + |E|), that is, is linear
in the size of the graph. As an immediate consequence of
this, algorithms, such as dfs, have the same complexity as
in the imperative case.

However, the implementation of functional graphs bears
a considerable overhead. To get an impression of the real
behavior, we compare the functional algorithms for graph
reversal, dfs, and DAG evaluation with corresponding im-
perative implementations. We also give the measures for
a functional realization of the imperative algorithms with
functional arrays.

The imperative algorithms make use of the imperative
arrays of ML and represent a graph simply by two arrays
for storing node labels and successors. The functional im-
plementation of the imperative algorithms use an efficient
implementation of balanced binary search trees [2] to repre-
sent functional arrays. The algorithms are slightly changed
to exploit the dynamic behavior of search trees and to ac-
count for state threading. The functional algorithms are
those defined in the paper, that is, they are defined through
ufold, gfold, and mfold which are based on & and & (or,
context) as provided by the persistent graph implementa-
tion described above. The source code is shown in the Ap-
pendix. As expected, the functional algorithms are signifi-
cantly slower than the imperative ones. This is mainly due
to the intensive use of the heap caused by updates to the
graph representing functional arrays.

We can improve the running time of the functional algo-
rithms by providing predefined graph fold operations. Con-
sider, for example, gfold: Instead of decomposing the ar-
gument graph in each step, we can use a local (imperative)
array M to mark those nodes already matched during the
current run of gfold: Initially, M is obtained by copying
the stamp array V of the argument graph. Then each time
the context of a node v is matched, M|v] is set to —1, and
only those successors and predecessor of v are selected that

2Note that the complexity of the general case could be improved
by employing advanced data structures for functional arrays, such as
[5], although an implementation would require considerable effort.

69

have a stamp equal to that in M. Similarly, mfold can be
improved by locally storing traversed edges in a hash table.

The case for ufold is more subtle. First, we observe that
the chosen array representation of a graph forgets about its
construction history. In particular, we do not know which
node (context) was inserted last. This implies that with this
implementation & cannot be used in pattern matching. So
to implement ufold we rather need a function like matchany
that matches an arbitrary node context. Now a simple im-
plementation for matchany will search for any (for example,
the first) node that has a valid stamp. Used repeatedly,
this leads to a running time of ufold that is quadratic in
the number of nodes. Thus, a predefined version that scans
the node array in a fixed order achieves linear complexity
for ufold. The implementation also uses a local imperative
array M similar to the predefined gfold.

We ran the implementations of grev and dfs on a sparse
graph (with a degree of 8) with 1000, 5000, and 10000 nodes.
The user time spent by SML/NJ 1.09 on a SPARCstation
10 is given in Figures 4 and 5. The “functionalized”-rows
show the times of a functional realization of the imperative
algorithms.

| 1000 | 5000 | 10000 || ratios |
functional | 0.68s | 13.04s | 50.49s || 68..388
predefined ufold | 0.16s | 0.98s | 3.25s 10..25
imperative | 0.01s 0.10s 0.13s 1
functionalized | 0.30s | 2.04s | 4.72s 20..36

Figure 4: Running times of grev.

The predefined version of ufold improves the running
time of grev by an order of magnitude, but it cannot com-
pete with the imperative implementation. However, it is
recognizably faster that the functionalized implementation.

| 1000 | 5000 | 10000 || ratios |
functional | 0.08s | 0.72s | 1.58s 8..12
predefined gfold | 0.02s | 0.17s | 0.26s 2.3
imperative | 0.01s | 0.06s | 0.13s 1
functionalized | 0.21s | 0.76s | 2.28s || 13..21

Figure 5: Running times of dfs.

We can see in Figure 5 that the predefined version of
gfold performs quite well. It is striking that gfold seems
to run much faster than ufold. This is certainly because
imperative dfs has to build a dfs-tree on the heap whereas
imperative graph reverse only works on its imperative ar-
rays.

The function evaldag was applied to tree-shaped DAGs
where internal nodes have two successors and predecessors.
The results are shown in Figure 6.

Again, the basic functional solution is extremely slow be-
cause mfold has to make intensive use of graph constructors.

| 5050 | 11325 | 20100 || ratios

functional | 2.59s | 7.41s | 15.08s || 43..49
predefined mfold | 0.32s | 0.82s 1.72s 5
imperative | 0.06s | 0.15s | 0.32s 1
functionalized | 0.46s | 1.18s | 2.35s 7..8

Figure 6: Running times of evaldag.

8 Conclusions

We have presented a new programming style for graphs that
draws much of its attraction from being based on pattern
matching and value decomposition, which are well-known
and accepted programming concepts. The most significant
difference between this and previous approaches is the de-
parture from the imperative view of graph traversals, giving
more opportunities for program transformation and opti-
mization. Although more work is required on functional
graphs and efficient graph operations, experiments with an
initial implementation are encouraging showing that the pre-
sented approach is a reasonable and practical alternative to
imperative graphs in functional languages. In particular,
predefined graph operations offer much potential for further
efficiency improvements.

References

[1] A. Aasa, S. Holstrom, and C. Nilsson. An Efficiency
Comparison of Some Representations of Purely Func-
tional Arrays. BIT, 28:490-503, 1988.

[2] S. Adams. Efficient Sets — A Balancing Act. Journal

of Functional Programming, 3:553-561, 1993.

R. S. Bird. Functional Algorithm Design. In Mathemat-
ics of Program Construction, LNCS 947, pages 2-17,
1995.

[4] F. W. Burton and H.-K. Yang. Manipulating Multi-
linked Data Structures in a Pure Functional Language.
Software — Practice and Experience, 20(11):1167-1185,
1990.

[5] P. F. Dietz. Fully Persistent Arrays. In Workshop on
Algorithms and Data Structures, LNCS 382, pages 67—
74, 1989.

[6] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tar-
jan. Making Data Structures Persistent. Journal of
Computer and System Sciences, 38:86-124, 1989.

M. Erwig. Graph Algorithms = Iteration + Data Struc-
tures? The Structure of Graph Algorithms and a Cor-
responding Style of Programming. In 18th Int. Work-
shop on Graph-Theoretic Concepts in Computer Sci-
ence, LNCS 657, pages 277292, 1992.

M. Erwig. Active Patterns. In 8th Int. Workshop on
Implementation of Functional Languages, LNCS 1268,
pages 21-40, 1996.

(8]

[9] M. Erwig and B. Meyer. Heterogeneous Visual Lan-
guages — Integrating Visual and Textual Programming.

70

[10]

[11]

[12]

[13]

[14]

[15]

[16]

17]

18]

[19]

[20]

[21]

[22]

23]

[24]

In 11th IEEE Symp. on Visual Languages, pages 318—
325, 1995.

L. Fegaras and T. Sheard. Revisiting Catamorphisms
over Datatypes with Embedded Functions. In ACM
Symp. on Principles of Programming Languages, pages
284-294, 1996.

J. Gibbons. An Initial Algebra Approach to Directed
Acyclic Graphs. In Mathematics of Program Construc-
tion, LNCS 947, pages 282-303, 1995.

Z. Hu, H. Iwasaki, and M. Takeichi. Deriving Struc-
tural Hylomorphisms from Recursive Definitions. In
1st ACM SIGPLAN Int. Conf. on Functional Program-
ming, pages 73-82, 1996.

Y. Kashiwagi and D. Wise. Graph Algorithms in
a Lazy Functional Programming Language. In 4th
Int. Symp. on Lucid and Intensional Programing, pages
35-46, 1991.

D. J. King and J. Launchbury. Structuring Depth-First
Search Algorithms in Haskell. In ACM Symp. on Prin-
ciples of Programming Languages, pages 344-354, 1995.

J. Launchbury. Graph Algorithms with a Functional
Flavour. In Ist Int. Spring School on Advanced Func-
tional Programming, LNCS 925, pages 308-331, 1995.

J. Launchbury and T. Sheard. Warm Fusion: Deriving
Build-Catas from Recursive Definitions. In Conf. on
Functional Programming and Computer Architecture,
pages 314-323, 1995.

G. Malcom. Homomorphisms and Promotability. In
Mathematics of Program Construction, LNCS 375,
pages 335-347, 1989.

E. Meijer, M. Fokkinga, and R. Paterson. Functional
Programming with Bananas, Lenses, Envelopes and
Barbed Wire. In Conf. on Functional Programming and
Computer Architecture, pages 124-144, 1991.

R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, 1990.

C. Okasaki. Functional Data Structures. In Advanced
Functional Programming, LNCS 1129, pages 131-158,
1996.

P. Palao Gonstanza, R. Pefia, and M. Nifiez. A New
Look at Pattern Matching in Abstract Data Types. In
1st ACM SIGPLAN Int. Conf. on Functional Program-
ming, pages 110-121, 1996.

T. Sheard and L. Fegaras. A Fold for all Seasons. In
Conf. on Functional Programming and Computer Ar-
chitecture, pages 233242, 1993.

P. Wadler. Views: A Way for Pattern Matching to
Cohabit with Data Abstraction. In ACM Symp. on
Principles of Programming Languages, pages 307-313,
1987.

P. Wadler. Deforestation:
to Eliminate Trees.
73:231-284, 1990.

Transforming Programs
Theoretical Computer Science,

Appendix

Proof of Theorem 2. We perform an induction on 1 and
g-

1=[From the definition of gfoldn we see immediately
that gfoldn h d b u [1 g = (u,g) and thus gfold
hdbu [l g=nu Likewise, gfold h e f u’ [1 g=
u’. Now the conclusion of the theorem follows directly
from the third premise.

g =Empty,1 =v::1’ gfoldn causes a call gfoldl h d b
u v Empty raising a Match exception that is handled to
return gfoldn h d b u 1’ Empty. Since no element
of 1’ can be matched in the empty graph, we know by
induction on 1’ and by the previous case that gfold
h d b u 1 Empty = u. For the same reason, gfold h
e f u’ 1 Empty = u’, and for this case the theorem
follows from the third premise.

g=c & g’,1=v::1" Here gfold first causes a call
gfoldl h d b u v g which either succeeds or results
in a Match exception. In the latter case handling the
exception yields gfoldn h d b u 1’ g, and since in
that case the corresponding expression gfoldl h e f
u’ v g also raises Match and yields gfoldn h e f u’
1’ g, we can assume the theorem by induction.

Otherwise, the gfoldl expression results in a pair
(x,g1) with x = d (lab,r) where lab is the label
of v and r is the first component of the recursive call
gfoldn h d b u s g’ (where s = f ¢). In the same
way we obtain a value r’ as the first component of the
expression gfoldn h e f u’ s g’, and we can apply
the induction hypothesis to obtain

Nr=r’ (1)
After the gfoldl expression has been evaluated, a pair
(y.g2) is computed by gfoldn h d b u 1’ gi. Simi-
larly, a pair (y’,g2) is given by the expression gfoldn
hefu 1’ gi. Note that the graphs gl and g2
are actually identical in the two folds since the graph
decomposition is only affected by h, 1/1°, and g/g’
which are identical in the corresponding fold expres-
sions. Now we can apply the induction hypothesis

again and get
Ny=y’ (2)

Finally, the result of gfold h d b u 1 gisb (x,y) =
b (d (lab,r),y). Likewise, the result of gfold h e £
u’ 1 gisf (e (lab,r’),y’). Now we can conclude:

N (gfold hd bulg)
= N (b (d (1ab,r),y))
£f (M (d (lab,r)),N y)
f (e (lab,N 1)),N y)
= f (e (lab,r’)),y’)
= gfold he fu” 1lg

(2nd premise)

(1st premise)
(ind.hyp. (1), (2))
O

Proof of Theorem 3. The proof is by induction on 1 and
g. For (1 = [1) and (g = Empty,1 = x::1) the result of
gfold is always u, and thus the theorem is true for these
cases.

Thus consider the case (g # Empty,1 = v::1’). gfoldn
bwd computes a pair (x,gl) through a call to gfoldl bwd.
There g can be written (due to active pattern matching)

71

as® (p,v,lab,s) & g’ which means that the pair (r,g2) in
gfoldl bwd is given by the expression gfoldn bwd d b u p
g’. Since grev g = (s,v,lab,p) & (grev g’) the corre-
sponding gfoldl expression caused by gfold fwd d b u 1
g can be written as gfoldl fwd d b u v ((s,v,lab,p) &
(grev g’)) if s does not contain v. (This restriction is nec-
essary because otherwise v would be “moved” through the
matching from s into p.) Then the pair (r,g2) in the call
gfoldl fwd is given by the expression gfoldn fwd d b u p
(grev g’). Now the theorem follows by applying the induc-
tion hypothesis to gfoldn bwd d b u p g’ and gfoldn fwd
d b up (grev g’) and to the remaining calls gfoldn fwd
d bul’ (grev gl) in gfoldn, respectively, gfold bwd d
b ul’ gilin gfoldn bwd.

If, on the other hand, v is contained in s, the
gfoldl expression caused by gfold fwd d b u 1 g can be
written as gfoldl fwd d b u v ((s’,v,lab,p’) & (grev
g’)) where s’ is equal to s with all occurrences of v re-
moved and p’ is p with all occurrences of v in s appended,
say. This means the pair (r,g2) in the call gfoldl fwd is
given by the expression gfoldn fwd d b u p’ (grev g’).
The difference to the expression above is some occurrences
of v in p’. Now since v is not contained in grev g’ the
eventually caused gfoldl calls with v will all raise a Match
exception (which are handled by just moving in p’ to the
next node). Thus, the presence of v in p’ has actually no
impact on the result compared with the corresponding com-
putation using p. This means that gfoldn fwd d b u p’
(grev g’) yields the same result as gfoldn fwd d b u p
(grev g’), so we can again apply the induction hypothesis,

and the theorem is proved. O
fun id x = x

fun p1 (x,.) = x

fun forceOpt (SOME x) = x

fun select _ _ [] = [1

| select f p (x::1)
if p x then f x::select f p 1
else select f p 1

Figure 7: Some utility functions.

signature FUN_ARRAY =

sig
type ’a array
val array : int * ’a -> ’a array
val sub ’a array * int -> ’a
val size ’a array -> int
val update ’a array * int * ’a -> ’a array
val toImpArray ’a array -> ’a Array.array
val fromList ’a list -> ’a array
val fromImpArray : ’a Array.array -> ’a array
end

Figure 8: Operations on functional arrays.

3The case for the Match exception is identical to Theorem 2.

structure FunArray : FUN_ARRAY =
struct

datatype ’a array =
Root of ’a Array.array
| Node of int * ’a * ’a array
| Cache of int * ’a * ’a array * bool ref * ’a Array.array

fun array (n,x) = Cache (0,x,Root (Array.array (m,x)), ref true,Array.array (n,x))
search (Cache (j,x, tree,_,_),i) = if i=j then x else search (tree,i)

search (Node (_,_,Root a),i) Array.sub (a,i)
search (Node (j,x, tree),i) = if i=j then x else search (tree,i)

fun search (Cache (_,_,Root a,_,_),i) = Array.sub (a,i)
|
|
|

and sub (tree as Cache (_,_,_,ref cache,c),i) = if cache then Array.sub (c,i) else search (tree,i)
| sub (tree,i) = search (tree,i)

fun size (Root a) = Array.length a
| size (Node (_,_,a)) = size a
| size (Cache (_,_,_,_,a)) = Array.length a

fun update (a as Cache (_,_,_,cache,c),i,x) =
if !cache then (cache := false; Array.update (c,i,x); Cache (i,x,a,ref true,c)) else Node (i,x,a)
| update (a,i,x) = Node (i,x,a)

fun fromList 1 = Cache (0,hd 1,Root (Array.fromList 1), ref true,Array.fromList 1)

fun fromImpArray a =
let val b = Array.array (Array.length a,Array.sub (a,0))
in (Array.copy {src=a,si=0,len=NONE,dst=b,di=0}; Cache (0,Array.sub (a,0),Root a,ref true,b))
end

fun toImpArray (Cache (_,_,Root a,_,_)) = (* is used only on unchanged arrays *)
let val b = Array.array (Array.length a,Array.sub (a,0))
in (Array.copy {src=a,si=0,len=NONE,dst=b,di=0}; b) end
end

Figure 9: Implementation of functional arrays with cache.

signature GRAPH =
sig
eqtype node = int
type ’a context = node list * node * ’a * node list
type ’a graph
exception Node

val empty : int -> ’a graph

val & : ’a context * ’a graph -> ’a graph

val context : node * ’a graph -> ’a context * ’a graph

val matchany : ’a graph -> ’a context * ’a graph

val noNodes : ’a graph -> int

val gmap : (’a => ’b) -> ’a graph -> ’b graph

val ufold : (’a context * ’b -> ’b) -> ’b -> ’a graph -> ’b

val gfold : ((node * int) list * node * ’a * (node * int) list -> (node * int) list) ->
(’a * ’b => ’c) -> (’c * ’b -> ’b) -> ’b -> node list -> ’a graph -> ’b

val mfold : (’a ¥ ’b -> ’c) > (°c * ’b -> ’b) -> ’b -> node list -> ’a graph -> ’b

end

Figure 10: Operations on functional graphs.

72

functor Graph (FunArray:FUN_ARRAY) : GRAPH =
struct

type node = int
type ’a context = node list * node * ’a * node list
exception Node
exception Edge

(* additional array functions *)

open FunArray

fun apply (a,i,f) update (a,i,f (sub (a,i)))

fun firstIndex (a,p) = let fun scan (i,p) = if p (sub (a,i)) then i else scan (i+1,p)
in scan (0,p) end

fun arrayToList f a = let fun list (f,a,i,n) = if i<n then f (sub (a,i))::list (f,a,i+1,n) else []
in list (f,a,0,size a) end

fun impArrayTolList a = let fun list (a,i,n) = if i<n then Array.sub (a,i)::list (a,i+1,n) else []
in list (a,0,Array.length a) end

(* stamp type and operations *)

type stamp = int

fun stampTrue i = abs i+l

fun stampFalse i = ~(abs i+1)

fun getStamp (na,n) = sub (na,n)

fun getNegStamp (na,n) = let val s=sub (na,n)

in if s>0 then raise Node else s end
let val s=sub (na,n)

in if s<=0 then raise Edge else s end

fun getPosStamp (na,n)

datatype ’a graph = Empty of int

| Full of stamp array * ’a array
(node * stamp) list array (* pred *)
* (node * stamp) list array (* suc *)

*

(* basic graph operations *)
fun empty n = Empty n

infixr 5 &
fun (pred,n,l,suc)&(Empty i)
(pred,n,l,suc)&(Full (array (i,0),array (i,1),array (i,[]),array (i,[])))
| (pred,n,1,suc)&(Full (na,la,pa,sa)) =
let val stampN = stampTrue (getNegStamp (na,n))
val stampedPred = map (fn x=>(x,getPosStamp (na,x))) pred
val stampedSuc = map (fn x=>(x,getPosStamp (na,x))) suc
fun updAdj (a,[]) = a
| updAdj (a,v::1) = updAdj (apply (a,v,fn adj=>(n,stampN)::adj),1)

in
Full (update (na,n,stampN),update (la,n,l),
updAdj (update (pa,n,stampedPred),suc),updAdj (update (sa,n,stampedSuc),pred))
end

fun context (n,Empty _) = raise Match
| context (n,Full (na,la,pred,suc)) =

if getStamp (na,n)>0 then

((select pl (fn (v,i)=>i=getStamp (na,v)) (sub (pred,n)),n,sub (la,n),
select pl (fn (v,i)=>i=getStamp (na,v)) (sub (suc,n))),

Full (apply (na,n,stampFalse),la,pred,suc))

else
raise Match

fun matchany (Empty _) = raise Match

| matchany (g as (Full (na,la,pred,suc))) =
(context (firstIndex (ma,fn i=>i>0),g) handle Subscript => raise Match)

Figure 11: Functional graph implementation (Part 1).

73

fun noNodes (Empty _)

| noNodes (Full (na,_,_,_))

fun gmap f (Empty i) =

=0
size na

Empty i

| gmap £ (Full (na,la,pa,sa)) =

let val x = f (sub

(1a,0))

val n = ref (size la)

val L
val _
in

while

Array.array (!n,x)

(In>0) do (n := !n-1;Array.update (L,!n,f (sub (la,!n))))

Full (na,fromImpArray L,pa,sa)

end

(* predefined fold operations *)

fun ufold f u (Empty _)
| ufold f u (Full (na

=u
,la,pred,suc)) =

let val V = toImpArray na

val n
fun ufoldi x =
if x<n then

let val

Array.length V

c = (select pl (fn (v,_)=>Array.sub (V,v)>0) (sub (pred,x)),
x,sub (la,x),
select pl (fn (v,i)=>Array.sub (V,v)>0) (sub (suc,x)))
= Array.update (V,x,"1)

val r = ufoldi (x+1)

val

in £ (c
else
u

in ufoldi O end

fun gfold £ d b
| gfold £fdbul (Fu
let val V =

fun gfoldl v =

and gfoldn []
| gfoldn ((v,
let val j =
in
if j<0
end
and gfoldm []
| gfoldm (v::

in
gfoldm 1
end

,r) end

ul (Empty _) = u

11 (na,la,pred,suc)) =

toImpArray na

(Array.update (V,v,"1);
let val l=sub (la,v)
in
d (1,gfoldn (f (sub (pred,v),v,l,sub (suc,v))))
end)
=u

i)::1)
Array.sub (V,v)

orelse i<>j then gfoldn 1 else b (gfoldl v,gfoldn 1)
=u

if Array.sub (V,v)<0 then gfoldm 1
else b (gfoldl v,gfoldm 1)

D)

Figure 12: Functional graph implementation (Part 2).

74

fun mfold d b u 1 (Empty _) = u
| mfold d b ul (Full (na,la,pred,suc)) =
let val V = toImpArray na
val n = Array.length V
val U = Array.array (n,false)
val L = Array.array (n,NONE)

exception NotFound
fun e2word (v,w) = Word.fromInt (v*5+w)
val E = HashTable.mkTable (e2word,fn (v,w)=>v=w) (5%n+1,NotFound)
fun mfoldl (pred,v) =
(case pred of SOME z => HashTable.insert E ((z,v),true) | NONE => ();
if Array.sub (U,v) then forceOpt (Array.sub (L,v))
else (Array.update (U,v,true);
let val x=d (sub (la,v),mfoldn (v,sub (suc,v)))
in (Array.update (L,v,SOME x); x) end))
and mfoldn (_,[]) =1
| mfoldn (z,(v,i)::1) =
let val j = Array.sub (V,v)
val e = getOpt (HashTable.find E (z,v),false)
in
if j<O0 orelse i<>j orelse e then mfoldn (z,1)
else b (mfoldl (SOME z,v),mfoldn (z,1))

end
and mfoldm [] =
| mfoldm (v::1) = if Array.sub (V,v)<0 then mfoldm 1 else b (mfoldl (NONE,v),mfoldm 1)
in
mfoldm 1
end

end (* functor Graph *)

Figure 13: Functional graph implementation (Part 3).

fun dfs’ d b u (N,Suc) =
let val V = Array.array (Array.length N,false)
fun dfsl v = (Array.update (V,v,true); d (Array.sub (N,v),dfsn (Array.sub (Suc,v))))
and dfsn [] =
| dfsn (v::1) = if Array.sub (V,v) then dfsn 1 else b (dfsl v,dfsn 1)
in dfsn (List.tabulate (Array.length N-1,id)) end
fun dfs g = dfs’ Branch (op ::) [g

fun evaldag (N,Suc) =
let val R = Array.array (Array.length N,Array.sub (N,0))
val _ = Array.copy {src=N,si=0,len=NONE,dst=R,di=0};
fun evall v =
case Array.sub (R,v) of
CON i => i
| OP £ => let val result = f ((fn [x,y] => (x,y)) (evaln (Array.sub (Suc,v))))
in (Array.update (R,v,CON result);result) end
and evaln [] =[]
| evaln (x::1) evall x::evaln 1
in evaln (roots (N,Suc)) end

fun grev (N,Suc) =
let val R = Array.array (Array.length N,[]:int list)

fun scan (i, []) =0
| scan (i,v::1) = (Array.update (R,v,i::Array.sub (R,v)); scan (i,1))
val _ = Array.appi scan (Suc,0,NONE)

in (N,R) end

Figure 14: Imperative graph algorithms.

75

