The Categorical Imperative —
Or: How to Hide Your State Monads

Martin Erwig

FernUniversitat Hagen, Praktische Informatik 1V
58084 Hagen, Germany
erwig@fernuni-hagen.de

Abstract. We demonstrate a systematic way of introducing state mon-
ads to improve the efficiency of data structures. When programs are
expressed as transformations of abstract data types — which becomes
possible by suitable definitions of ADTs and ADT fold operations, we
can observe restricted usage patterns for ADTs, and this can be ex-
ploited to derive (i) partial data structures correctly implementing the
ADTs and (ii) imperative realizations of these partial data structures.
With a library of ADTs together with (some of) their imperative im-
plementations, efficient versions of functional programs can be obtained
without being concerned or even knowing about state monads. As one
example we demonstrate the optimization of a graph ADT resulting in
an optimal imperative implementation of depth-first search.

1 Introduction

State monads are essentially used to (i) to make the passing of state through
successive function calls more explicit and (ii) to enable the imperative imple-
mentation of updates to the state. The latter is possible, since state monads
ensure a single-threaded use of the state. Coming from category theory, monads
enjoy some useful laws and are mathematically elegant. However, it seems that
state monads are not very easy to use — at least for the average functional pro-
grammer. Another aspect is that part of the elegance of functional programs is
lost when using monads, and since state monads extend as far as one state is
needed, they tend to “infect” large parts of functional programs. This is certainly
due to the restrictions monads put on state based computations. Nevertheless,
state monads are sometimes needed in Haskell' to achieve efficient implemen-
tations for some algorithms. Now it 1s a tempting idea to be able to use state
monads implicitly without ever seeing them or even knowing about their ex-
istence. In other words, we would like to rely on certain parts of a program
to be executed very efficiently through the use of imperative features without
programming these imperative parts (ourselves). Are we promising a heaven on

! References in ML are easier to use, and they are also much more flexible. However,
in contrast to state monads, they do not guarantee referential transparency.

earth? Of course, the imperative program fragments have to be generated some-
how,? but the important point is that they need not be merged with the rest
of the program, they can reside in separate modules and can be selected by an
optimizer when appropriate.

This factorization of imperative program parts becomes possible by a specific
programming style in which programs are expressed by transformations of data
types. Without knowing the details, ask yourself: what happens by transforming
a list into a set and then back into a list? — Yes, this is a function for removing
duplicates. Or, transforming a list into a heap and again back into a list? — This
is nothing but heapsort. These two examples worked well, since the involved
data structures are well understood, and since there is an agreed way of how
to build and inspect values of these types. In contrast, it is not so clear what
happens when we transform lists into natural numbers. What should that mean
at all? Tt clearly depends on what data type for natural numbers we have in
mind, in particular, how natural numbers are built. One view is to count from
zero upwards, and taking this data type, the described transformation realizes
counting (that is, the length function). But if we think of constructing natural
numbers by addition, the transformation rather describes the sum function (of
course, this works only for lists containing numbers). Hence, the meaning of
transformations depends on the precise definition of the participating data types.
Once these are given, a transformation proceeds in a structured and exactly
prescribed way; it defines a fixed recursion pattern on data types, which is well-
known for lists under the name foldr. We describe this programming style in
Sect. 2.

The restricted usage patterns of data types in transformations offer spe-
cific techniques for their implementation. For example, data type values are
single-threaded within a transformation which suggests imperative implementa-
tions. But the usage of data types is even more restricted: beyond being single-
threaded, the sequence of possible function applications is also restricted which
allows even more liberal implementations. For example, destructed values are
not subjected to constructor applications so that implementations can choose
data type representation that only support destructors. We describe these issues
in some detail in Sect. 3. This prepares for the later introduction of imperative
data structures. In Sect. 4 we present an application using a graph ADT, and
Sect. 5 then describes the introduction of imperative implementations by state
monads. We finish the paper by commenting on related work in Sect. 6 and by
giving some conclusions in Sect. 7.

2 Folds for Abstract Data Types

In this section we briefly review our proposal for extending the struc-
tured recursion discipline to abstract data types. For a more comprehen-

2 Presently, we assume that a skilled programmer — one of those who loves to program
with state monads — has done this, but we are currently investigating possibilities
for automated generation.

sive introduction, see [5]; the formal categorical background is developed
in [3]. Both papers and some Haskell source files can be obtained from
http://www.fernuni-hagen.de/inf/pi4/eruig/meta.

2.1 Representation of Algebraic Data Types

A definition of data type T introduces a set of constructors c1, ..., cn which can be
viewed as functions of types T1 -> T, ..., Tn => T. The common result type T is
also sometimes called the carrier of the data type. For instance, the list data type
(T = [al) is defined by the two constructors [1 :: [al (with empty argument
type) and (:) :: a -> [a] -> [al. It can be thought of being defined by:

data [a] =[] | a : [al

In order to define operations (such as fold) for arbitrary data types we need
a way of encoding data types in Haskell itself. This can be achieved by com-
bining all constructors into one constructor mapping from the separated sum of
argument types to the carrier. The union of argument types can be denoted by
specific type constructors. For example, the argument type structure for the list
data type is captured by the following type constructor.

data Linear a b = UnitL | ProdL a b

Now Linear a applied to [a] denotes the proper argument type for the com-
bined list constructor, which can then be defined as:

cList :: Linear a [a] —> [a]
cList UnitL =[]
cList (ProdL x 1) = x:1

As another example consider a data type for natural numbers made up by a
zero constant and a successor function. To combine both into one constructor
we need another type constructor:

data Const a = UnitC | ProdC a

Now we can define the constructor using built-in integer numbers as the carrier:

cNat :: Const Int -> Int
cNat UnitC =0
cNat (ProdC n) = succ n

Thus, in general, an algebraic data type can be regarded simply as a function c
:: £ t —> t where £ is the type constructor denoting the argument type union
of the constructor(s) c.

2.2 Type Constructors as Functors

As far as constructors and algebraic data types are concerned we can use arbi-
trary type constructors to describe the argument type structure. However, the
definition of ADT fold requires that destructors (the dual of constructors) are
defined with result types being expressed by type constructors that offer a map
function. In Haskell there is a predefined constructor class Functor for this (in
the following we abbreviate Functor by F to save some line breaks):

class F f where
map :: (t -> u) > (£ t -> £ u)

Now Linear and Const are both examples of functors. The corresponding in-
stance declarations are:

instance F (Linear a) where
map £ UnitL = UnitL
map £ (ProdL x y) = ProdL x (f y)

instance F Const where
map £ UnitC = UnitC
map f (ProdC x) = ProdC (f x)

Linear is a binary type constructor, and the generalization of the functor prop-
erty to the binary case is captured by the constructor class BiF that offers a
function map2 for mapping along both type parameters.

class BiF f where
map2 :: (a->Db) > (t >u) >fat->fbu
mapFst :: (a ->b) >fat->fbt
mapFst £ = map2 f id

The instance definition for Linear is:

instance BiF Linear where
map2 £ g UnitL = UnitL
map2 £ g (ProdL x y) = ProdL (f x) (g y)

The definitions for cList and cNat have a uniform shape, and in fact, most of the
constructor and destructor definitions are of a specific form that can be captured
by standardized functions to map from and to functor type constructors. For
example, a canonical way of mapping from and to Linear types is:

fromL :: t -=> (a -> b -> t) -> Linear a b -> t
fromL u £ UnitL =1
fromL u £ (ProdL x y) = f x y

toL :: (t => Bool) -> (t -> a) -> (¢t => b) -> t -> Linear a b
toL p £ g x = if p x then UnitL else ProdL (f x) (g x)

This allows us to denote the list constructor much more succinctly:
cList = fromL [] (:)

Similarly, we can define fromC and toC.

fromC :: t -> (a -> t) -> Const a > t
fromC u £ UnitC =u
fromC u £ (ProdC x) = f x

toC :: (t -> Bool) -> (t -> a) -> (t -> Comnst a)
toC p £ x = if p x then UnitC else ProdC (f x)

We can then give the following definition for cNat:
cNat = fromC 0 succ

Applications of toL and toC follow below.

2.3 Destructors and Abstract Data Types

A data type destructor is the dual of a constructor, that is, a function 4 ::
t -> g t mapping the carrier to, for example, a union of possible result types.
For each algebraic data type ¢T :: £ t -> t we can easily define its canonical
destructor AT :: t —-> £ t by simply flipping both sides of the definition. For
example, the list destructor is defined by:

dList :: [a] -> Linear a [a]
dList [] = UnitL
dList (x:1) = ProdL x 1

Again we can give a shorter version by using toL, the dual of fromL:
dList = tolL null head tail

The definition of the canonical destructor for cNat is similar.
dNat = toC (==0) pred

Of course, we can also define destructors for non-free data types (that is, equa-
tionally constrained data types). For example, a destructor for sets (based on a
list carrier) is obtained as follows.

dSet :: Eq a => [a] -> Linear a [a]
dSet = toL null head rest
where rest (x:xs) = filter (/=x) xs

Now we can define an abstract data type as a pair of constructor and destructor
with a common carrier type. We need no restriction on the argument type of the

constructor, but we require the result type of the destructor to be given as an
application of a functor to the carrier type. This is necessary, since the definition
of fold uses the function map to fold recursive occurrences of t-values.

data F g => ADT s gt = ADT (s > t) (¢t -> g t)

con (ADT c _)
des (ADT _ d)

c
d

Occasionally, we will use the following type abbreviations:

type SymADT g t
type LinADT a t

ADT (g t) g t
SymADT (Linear a) t

We can now define 1ist, set, and nat ADTs simply by:

list :: LinADT a [a]
list = ADT cList dList

set :: LinADT a [a]
ADT cList dSet

set

nat :: SymADT Const Int
ADT cNat dNat

nat

We are, of course, not constrained to symmetric ADTs. We can define many
ADT variants by exchanging either the constructor or the destructor. Concerning
natural numbers, for example, we can use multiplication as a binary constructor
or a function that additionally splits off the number being decomposed as a
destructor:

prod :: ADT (Linear Int Int) Const Int

prod = ADT (fromL 1 (*)) dNat
rng :: ADT (Const Int) (Linear Int) Int
rng = ADT cNat (toL (==0) id pred)

Many more examples can be found in [5].

2.4 ADT Folds and Transformers

Fold operations on algebraic data types are typically defined with the help of
pattern matching: applied to a value v, fold determines the outermost constructor
of v and applies an appropriate parameter function (that conforms to the type
of the disclosed constructor). Formally, a fold is defined as a homomorphism
from the argument type to some result type, and this definition works only
if the result type is a quotient of the argument type (because otherwise the
homomorphism would not be uniquely defined). In other words, fold cannot map

to less constrained structures. This is the reason that, for example, counting the
elements of a set cannot be expressed as a fold operation. This restriction can
be lifted if fold is not based on pattern matching, but on explicitly defined data
type destructors.

Folding an ADT value of type t with a parameter function £ then works
as follows: first, the ADT destructor is applied, yielding a value v of type g t.
Intuitively, one part of v contains values that are taken from (or split off) the
ADT, and the other part represents the recursive occurrence(s) of t-values. The
recursive part is then folded, followed by an application of £ to the result and
the non-recursive part of v. The recursive folding step is realized by using the
function map that is defined for the functor g, and we thus see the need for at
least the type of ADT destructors being expressed by a functor expression.

fold :: Fg=>(gu->u) >ADTsgt->t>u
fold f a = f . map (fold £ a) . des a

We observe that fold’s parameter function must map from the functor of the
ADT to the result type. For example, a function that multiplies all numbers in
a list can be written as a fold:

mult :: Num a => [a] -> a
mult = fold (fromL 1 (*)) list

In this example it is striking that the parameter function of fold is nothing but
a constructor of an ADT, namely the ADT prod. This special case occurs very
often and is important enough to introduce an own definition for it. We call this
kind of fold an ADT transformer. In order to be able to transform an ADT with
a result type functor g into an ADT whose argument type does not match g
(that is, whose argument type cannot be expressed by an application of g) we
include a parameter function that can be used to adjust the two type structures.

trans :: (F g,F h)=>(g u->r) -> ADT s gt -=> ADT r h u -> (t->u)
trans f a b =con b . f . map (trans f a b) . des a

In an expression trans f a b we call a the source ADT and b the target ADT;
f is called the map of the transformer. When the type structures of the source
and the target ADT agree, we have £ = id. We abbreviate this case by:

transit = trans id
We can thus rewrite the above example as:
mult = transit list prod

To understand the need for the additional parameter of trans, consider the task
of determining the length of a list. We can express this as a transformer from
list to nat. However, the results delivered by dList have not the proper shape
for applying cNat, and we must provide a map from Linear to Const:

-~

length = trans p2 list nat
where p2 UnitL
p2 (ProdL _ y)

UnitC
ProdC y

Note that virtually the same definition works for sets, too, that 1is, if we simply
replace 1ist by set we obtain a proper function for determining the cardinality
of sets. This is because folds and transformers are based on destructors, and the
set destructor normalizes the set representation, that is, it removes duplicates,
so that each set element is counted exactly once.

By composing two or more transformers we can build streams of ADTs which
can be used like filters. The most common case is to compose two transformers:

via::(F g,F h,F i)=>ADT s g t->ADT (g u) h u->ADT (h v) i v->t->v
via a b ¢ = transit b ¢ . transit a b
With via we can now formulate the examples mentioned in the Introduction.

remdup = via list set list
heapsort = via list pqueue list

2.5 Laws

The proposed extension of folds to ADTs is conservative in the sense that laws
and optimization techniques developed for algebraic data types are still valid in
the extended framework. The purpose of this section is to collect some of the
laws that are needed later on in the paper.

We have already observed that trans is a special case of fold in the sense
that the parameter function for fold is obtained from an ADT. In a similar way
we can generalize fold by relaxing the requirement that the destructor must be
taken from an ADT. We then arrive at a function definition that is essentially a
hylomorphism [13, 17].

hylo :: F£f=>(f b ->b) > (a > f a) -> (a -> b)
hylo ¢ d = ¢ . map (hylo c d) . d
Now we can also specialize the first parameter, and we obtain a definition for
unfold.
unfold :: (F £,F g) => (t > £ t) > ADT (£ u) gu —> (¢t -> u)
unfold £ a = con a . map (unfold f a) . f

fold and unfold are related in a natural way to hylo:

fold £ a = hylo £ (des a) (FoldHylo)
unfold £ a = hylo (con a) f (UnfoldHylo)
unfold (des a) b = fold (con b) a (UnfoldFold)

Since trans is actually nothing but a special case of fold we also know:
trans f a b = hylo (con b.f) (des a) (TransHylo)

A source of many useful fusion laws is the free theorem [18] for the type of hylo:

Theorem 1 (FreeHylo).
l.c = ¢’.mapl A d’.r = mapr.d —
l.hylo cd = hyloc’ d’.r

O

We can derive two specialized versions from the FreeHylo theorem for fusion
from the left and from the right: (1) let r = id and 4’ = d (then the second
premise of the theorem is trivially true) or (2) let 1 = id and ¢’ = ¢ (then the
first premise of the theorem is trivially true).

Corollary 1 (HyloLeft).
l.c = ¢’.mapl — 1.hylocd = hyloc’ d O

Corollary 2 (HyloRight).
d’.r = mapr.d — hylocd’.r = hylocd O

Note that, in general, FreeHylo and HyloLeft hold only for strict functions 1.

There exist many more laws, in particular, we have also free theorems for
fold and unfold and several fusion laws that follow from these, but for brevity
we omit them here.

3 Partial Data Structures

When programming with folds or transformers, ADT values are always built
or decomposed in one run. In particular, no intermediate version that emerges
during construction or destruction is visible from the outside, and we can try to
develop efficient constructors and destructors that utilize this fact in some way.

First of all, we have to define what “intermediate values”, called temporaries,
exactly are. For this purpose we consider in the sequel the following two ADTs

a:: ADTs gt
a ADT ca d

b :: ADT (g u) hu
b ADT c db

and a function

g::t->nu
g =trans f a b

Assume that the application of g to the argument x :: t yields the result y
:: u. Then all values of type t that are created during the evaluation of g x
(that is, all t-values except the argument x itself) are t-temporaries. Likewise,
all values of type u that are created during the evaluation of g x, except the
result y, are u-temporaries.

Let us now consider the properties of temporaries in more detail: first, it
is clear that each temporary is used exactly once by either a constructor or a
destructor, that is, the intermediate ADT values are single-threaded. 1t is well

known that single-threaded data structures can be safely implemented in an
imperative way. Moreover, temporaries enjoy restricted access patterns. More
specifically, temporaries used in a constructing phase are never subject to an
application of a destructor, that is, in the example we will never encounter an
expression like db y’ for any u-temporary y’. Similarly, a constructor will never
be applied to a temporary created within a destruction phase, that is, in the
example we will never see an expression (con e) x’ for any t-temporary x’
(and for a suitable ADT e).

This information can be used as follows: whereas the representation of t- and
u-values in general must support application of constructors and destructors, this
is not the case for t-temporaries and u-temporaries, that is, a representation for
t-temporaries must only support destructor application, and a representation
for u-temporaries has only to account for constructors. We can therefore try to
use such specialized representations in the evaluation of functions like g to gain
efficiency.

We call this kind of data structures supporting only a subset of operations
partial data structures. Investigating partial data structures leads in quite the op-
posite direction as functional data structures do: whereas functional data struc-
tures have to account for additional requirements [15] (that is, persistent access
and different versions) partial data structures can exploit the fact that they are
used in a restricted way.

Requirements ‘ oW . high

‘Partial DS +— Imperative DS —— Functional DS

Now let t° and u’ be appropriate types for representing the destructor-limited
view of t, respectively, the constructor-limited view of u. To compute g based on
t’ or u’ we need two functions to map into, respectively, out of, the specialized
representations:

into :: t -> ¢’

outof :: u’ -> u

and we need modified constructors/destructors:

a’ . t? > g t’
¢’ it gu —>u

There are four possible cases of how and where specialized representations can
be used:

1. Neither in the source nor in the target ADT
2. Only in the source ADT

3. Only in the target ADT

4. In both the source and the target ADT

Now the reformulation of g depends on the places where specialized representa-
tions are to be used. In the first case, no reformulation is possible; we consider
the remaining cases in the next three subsections.

10

3.1 Specialized Representation in Source ADTs

In this case we essentially employ a modified destructor d’ working on the spe-
cialized representation t’. If we persisted in using trans for expressing g’, we
would have to define a whole new source ADT with carrier t’ instead of just
introducing a new destructor. This would affect the modularity of our ADT con-
cept, and being forced to invent a new constructor on the new carrier t’ would
be highly inconvenient. We therefore use an extended definition for ADTs that
allows to deal with two different (but related) carriers. In addition to constructor
and destructor we also need a carrier map, that is, a function that maps from
the constructor carrier to the carrier used by the destructor.

data F g=>ADT2 s t g t’ = ADT2 (s > t) (t -> t’) (£’ > g t’)

con2 (ADT2 ¢ _ _) = ¢
cmap (ADT2 _m _) = m
des2 (ADT2 _ _d) =4

The idea behind the definition of ADT2 is to construct a value of an ADT based
on one carrier t while being able to destruct the same value with a destructor

working with a possible different carrier t’. We can now define a specialized
ADT a’ simply by:

a’ = ADT2 (con a) into d’

Next we need a transformer definition that employs an extended ADT as source:

transS :: (F g,F h)=>(g u->r)->ADT2 s t g t’->ADT r h u->(t->u)
transS £ (ADT2 _md) (ADT c _) =h . m
where h = c . £f . map h . d

We observe that the constructor of the source ADT is not needed at all. This
fact can be used to give an alternative definition for transS which is based on
trans. This will facilitate the comparison of both kinds of transformers and
also sometimes correctness proofs for functions employing specialized ADTs. We

therefore introduce first an operator that maps an extended ADT back to an
“ordinary” ADT:

toADT :: F g => ADT2 s t g t’ -> ADT s g t’
toADT (ADT2 ¢ m d) = ADT (m.c) d

The constructor m. ¢ of the resulting ADT makes, in general, not much sense, but
this is not a problem, since we use such a trimmed ADT only for its destructor.
We can now give the following modified definition for transs:

transS f a b = trans f (toADT a) b . cmap a (TransS)

Again, we also use the special case for £ = id:

11

transitS :: (F g,F h)=>ADT2 s t g t’ -> ADT (g u) h u -> (t->u)
transitS = transS id

With the help of transitS we can now define g very easily based on a’:
g’ = transitS a’ b

Now the question is whether the described transformation is correct at all. In
other words, under which conditions does g = g’ hold? All we have actually
done in the definition of g’ is to exchange the destructor, working on t’-values
that are obtained from t-values by an application of into. Formally, we have
the following relationship (we still assume a = ADT ca d and b = ADT c db).

Theorem 2 (Destructor Specialization).

d’.m = map m.d —
trans £ a b = transS f (ADT2 cam d’) b
Proof. Let a’ = ADT2 ca m d’, and a’’ = toADT a’ = ADT (m.ca) 4’. In
particular, we know des a’’ = des2 a’ = d’. Now we have:
transS f a’ b = trans £ a’’ b.m { TransS }
= hylo (c.f) d’.m { TransHylo }
= hylo (c.f) d {HyloRight }
= trans f a b { TransHylo } O

To take a simple example, consider the ADT queue and a transformer from
queue into list:

queue :: LinADT a [al
queue = ADT cList dQueue
where dQueue = tolL null last init

ql = transit queue list

The destructor dQueue is very inefficient, since it takes elements always from the
end of the list representation. This causes ql to run in quadratic time. We can
do much better if we use an extended ADT with

(1) t’ =1t = [a]
(2) 4’ = toL null head tail (= dList)
(3) into = rev

This means to construct as well as destruct a queue represented as a list from
the front. For this to work we need two different list representations of queues,
and the representation used for destruction is just obtained by reversing the list
of the construction phase. So we have:

ql’ = transitS (ADT2 cList rev dList) list
We can prove q1 = ql’ by using Theorem 2. We therefore first we have to

establish the precondition, that is, we have to show:

12

Lemma 1. dList.rev = map rev.dQueue

Proof. We consider the two cases of empty and non-empty lists. Note below
that map is the map function for type Linear and not for lists.

(dList.rev) [] = dList []

UnitL

map rev UnitL

map rev (dQueue [])
= (map rev.dQueue) []

(dList.rev) (xs++[x]) = dList (rev (xs++[x]))

dList (x:rev xs)

ProdL x (rev xs)

map rev (ProdL x xs)

map rev (dQueue (xs++[x]))

= (map rev.dQueue) (xs++[x]) a

I

I

I

We can now apply Theorem 2 and obtain:
Corollary 3. q1 = ql° a

This example was fairly simple, it has been chosen to demonstrate the ideas
without loading too many details. We will deal with a more realistic application
in Sect. 4.

3.2 Specialized Representations in Target ADTSs

The situation here is similar to that of the preceding section. We can specialize
a target ADT b by giving a new constructor ¢’ and an appropriate carrier map:

b’ = ADT2 ¢’ outof (des b)

A transformer definition that uses an extended ADT as target can be given
dually to transsS:

transT :: (F g,F h)=>(g u->r)->ADT s g t->ADT2 r u h u’->(t->u’)
transT £ (ADT _ d) (ADT2 ¢cm _) =m . h
where h = c . £f . map h . d

(We cannot give an alternative definition for transT based on trans, since in
order to define an analog to the function toADT we needed something like the in-
verse of m to build from the destructor of the extended ADT of type u’ -> h u’
a dummy function of type u => h u.) But we can still define transitT:

transitT :: (F g,F h)=>ADT s g t —> ADT2 (g u) u h uw’ -> (t->u’)
transitT = transT id

13

With the help of transitT we can now implement the function g using a spe-
cialized target ADT b?:

g’ = transitT a b’

Again, we can ask when g = g’ does hold, and we have a result similar to
Theorem 2 (let a = ADT ca d and b = ADT ¢ db).

Theorem 3 (Constructor Specialization).
m.c’ = c.mapm A m s strict =
transit a b = transitT a (ADT2 ¢’ m db)

Proof. Let b’ = ADT2 ¢’ m db. We know con b’ = c¢’. Moreover, let h =
c¢’.map h.d. Now we have:

transitT a b’ = m.h {Def. of transT}
= m.hylo ¢’ d {Def. of hylo}
= hylo c d {HyloLeft }
= transit a b {TransHylo } O

To give an example consider the transformer
1lq = transit list queue

where we assume that the queue ADT is defined to enqueue at the end of a list
and to dequeue from the front:

queue = ADT snoc dList
where snoc = fromL [] (\x gq->g++[x])

Here 1q (like q1) takes quadratic time, which can be improved to linear time by
using an extended ADT with

(1) t’ =1t = [a]
(2) ¢’ = fromL [1 (:) (= cList)

(3) outof = rev

Again, this means to construct as well as destruct a queue represented as a list
from the front, and the two different list representations are converted by list
reversal.

1q’ = transitT list (ADT2 cList rev dList)
We prove that 1q = 1q’ with the help of Theorem 3. We first show:

Lemma 2. rev.cList = snoc.map rev

14

Proof. Consider the two cases of type Linear:

(rev.cList) UnitL = rev []

1

snoc UnitL

= (snoc.map rev) UnitL

Il

Il

(rev.cList) (ProdL x xs) = rev (x:xs)

rev xs++[x]

snoc (Linear x (rev xs))

= (snoc.map rev) (ProdL x xs) a

We can now apply Theorem 3 and obtain:

Corollary 4. 1q = 1lqg’ o

3.3 Specialized Representations in Source and Target ADTs

Combining the results of the preceding two subsections we can use specialized

representations within both the source ADT destructor and the target ADT

constructor. For this we need a further kind of transformer:

transST:: (F g,F h)=>(g u->r)->ADT2 s t g t’->ADT2 r u h uw’->(t->u’)

transST £ (ADT2 _ ma d) (ADT2 ¢ mb _) =mb . h . ma
where h = c . f . map h . d

Again we let
transitST = transST id

We can also express transS and transT as special cases of transST by canoni-
cally extending a target or source ADT with an identity carrier map.

ext a = ADT2 (con a) id (des a)

transS f a b transST £ a (ext b)
transT f a b = transST £ (ext a) b

We can also combine Theorems 2 and 3:

Theorem 4 (Double Specialization).

mb.c’ = c.map mb A mb s strict A
d’.ma = map ma.d —
transit a b = transitST (ADT2 ca ma d’) (ADT2 ¢’ mb db)
Proof. L.et a’ = ADT2 ca ma d’ and b’ = ADT2 ¢’ mb db. We know des a’
=d’ and con b’ = ¢’. Moreover, let h = ¢’ .map h.d’. Now we have:
transitST a’ b’ = mb.h.ma {Def. of transST}
= mb.hylo ¢’ d’.ma {Def. of hylo}
= hylo ¢ d’.ma {HyloLeft }
= hylo ¢ d { HyloRight }
= transit a b { TransHylo } O

4 An Advanced Example

Graphs are among the most complicated (basic) ADTs to deal with. So they
provide a good “benchmark” for the expressiveness of the proposed ADT for-
malism. Moreover, since the efficient treatment of graphs in purely functional
languages 1s not trivial, this is also a good test for the claimed optimization
opportunities.

4.1 Defining Graph ADTs

To cast graphs into the proposed ADT formalism we use the inductive graph
view presented in [2]: a graph is either empty, or it is constructed by adding a
node together with edges to its predecessors and successors. Graph a b denotes
the type of graphs with node (edge) labels of type a (b), and a node context is
a labeled node together with a list of labeled incoming and outgoing edges.

type Node = Int
type Adj b = [(b,Node)]
type Context a b = (Adj b,Node,a,Adj b)

Then we have the following two graph constructors:

empty :: Graph a b

embed :: Context a b -> Graph a b -> Graph a b
which can be combined as follows.

cGraph :: Linear (Context a b) (Graph a b) -> Graph a b
cGraph = fromL. empty embed

The decomposition of graphs can be defined in quite different ways. A simple
solution is to split off an arbitrary node from the graph. However, this limits
the number of problems that can be solved by graph transformers. In contrast,
decomposition of specific nodes offers control over the decomposition order and
provides much flexibility. We therefore use a function match that retrieves and
removes a particular node from a graph. Since the request for decomposing a
specific node might fail, match is defined to return Maybe contexts:

type MContext a b = Maybe (Context a b)

match :: Node -> Graph a b -> (MContext a b,Graph a b)

Next we define a graph ADT that is specialized to support depth-first search.

16

4.2 Depth-First Search

We shall express depth-first search as a transformer from a (stack, graph) ADT
to a list ADT. The stack is needed to control the decomposition order of the
graph: the context to be taken next from the graph is determined by the top of
the stack, and the successors from the last decomposed context are pushed onto
the stack to prepare the next decomposition. We implement the stack as a list.

type StkGraph a b = ([Node],Graph a b)

The graph destructor is now defined as follows: decomposition immediately stops
when the stack is exhausted or when the graph to be decomposed 1s empty. Oth-
erwise, the top of the stack v 1s matched in the graph which yields a remaining
graph g’ and possibly a context value Just ¢ (or Nothing if v is not contained
in g). The list of successors of ¢ (or [1) is pushed onto the stack, and the context
c together with the new (stack, graph) pair is returned as the result.

dGraph :: StkGraph a b -> Linear (MContext a b) (StkGraph a b)
dGraph (s,g) = if null s || isEmpty g then UnitL else
ProdL ¢ (suc++tail s,g’)
where (c,g’) = match (head s) g
suc = maybe [] (map snd.q4) c
qt¢ (_,_,_,d) =d

Since we are here only interested in destructing a graph, we use this destructor
together with a dummy constructor to define a graph ADT.

graph :: ADT () (Linear (MContext a b)) (StkGraph a b)
graph = ADT (_->([],empty)) dGraph

Depth-first search is now realized by simply transforming a graph into a list which
collects Just-contexts and ignores Nothing-values. Since we are interested only
in the node values, we select the second component of the context tuple. This
projection function nid and the Maybe-variant of the list ADT mlist are given
below (note that map is the map function for the functor Maybe).

nid :: Linear (MContext a b) g -> Linear (Maybe Node) g
nid = mapFst (map q2)
where q2 (_,b,_,_) =D

mlist :: ADT (Linear (Maybe a) [a]) (Linear a) [a]
mlist = ADT mList dList
where mList UnitL =[]
mList (ProdL Nothing xs) = xs
mList (ProdL (Just x) xs) = x:xs

Note that dfsn needs an initial stack value, and dfs uses by default a list of all
graph nodes as this initial value (to be able to completely explore even uncon-
nected graphs).

17

dfsn :: ([Nodel,Graph a b) -> [Nodel
dfsn = trans nid graph mlist

dfs :: Graph a b -> [Nodel
dfs g = dfsn (nodes g,g)

This implementation of dfs bears some inefficiency because of the need to con-
struct intermediate graphs, which means to remove decomposed nodes from suc-
cessor and predecessor lists. Assuming that graphs are represented by balanced
search trees mapping nodes to their contexts, dfs runs in O(n + elogn + nd?)
time where n and e denote the number of nodes and edges in the graph and d is
the average node degree. The second term represents the cost for searching the
predecessor /successor lists for removing edges. After a context has been found,
these lists have to be scanned to remove a node, and they contain, on the aver-
age, initially d, after the first removal d — 1, etc. nodes. Thus, the context of each
node will be reduced in d 4+ (d — 1) + ...+ 1 steps, and the last term represents
the total cost resulting from the reorganization of all contexts. Hence, for sparse,
respectively, dense, graphs dfs needs O(nlogn), respectively, O(n?), time.

4.3 Graph Destructor Specialization

Next we describe how to improve the efficiency of dfs by devising a partial
graph destructor. So how can we save the construction of intermediate graphs?
The key idea is to delay the node deletion. This means, instead of removing a
node from the graph immediately after decomposition we remember decomposed
nodes and remove them from returned contexts. We therefore extend the carrier
for decomposition by a set recording the already decomposed (“visited”) nodes.?

type StkGraph’ a b = (StkGraph a b,Set Node)

The node set is initially empty, so we use the following into function that just
extends a (stack, graph) pair by an empty set:

unvisit x = (x,emptySet)

The set of nodes is extended within the modified destructor dGraph’: whenever
the context of a node v is requested the first time, v is inserted into the set
of visited nodes. The improved performance of dGraph’ results from the use
of the function context instead of match: whereas context only has to find a
node’s context, match has to build a representation of the graph from which the
matched node has been removed. The function context is otherwise very similar
to match, it can be thought of being implemented by:

¥ For this purpose the discrete interval encoding tree [4] is suited very well, since its
performance improves with the density of the stored subsets, and for graph algo-
rithms, such as dfs, the set of visited nodes constantly grows until the complete
node set is stored.

context :: Node -> Graph a b -> Context a b
context v g = case match v g of
(Just ¢c,_) > ¢
-> error ("Matching node: "++show v)

Now we can define dGraph’:

dGraph’: :StkGraph’ a b->Linear (MContext a b) (StkGraph’ a b)
dGraph’ (([1,.),_) = UnitL
dGraph’ ((v:vs,g),d) =
if isEmpty g then UnitL else
if member v d then ProdL Nothing ((vs,g),d) else
ProdL (Just (p’,v,1,s’)) ((map snd s’++vs,g),insert v d)
where (p,_,1,s) = context v g
filter (\(_,w)->not (member w d)) s
filter (\(_,w)->not (member w d)) p

S)
p)

Hence, we can use an extended graph ADT with:

(1) t» = StkGraph’ a b
(2) 4’ = dGraph’
(3) into = unvisit

We can thus obtain the following optimized implementation for depth-first
search.

dfsn’ = transS nid (ADT2 (_->([],empty)) unvisit dGraph’) mlist
dfs’ g = dfsn’ (nodes g,g)

Since all set insertions take O(nlogn) steps and all set membership tests need
O(elogn) time, dfs’ runs in O((n + €)logn) time (even when representing
graphs as immutable arrays mapping nodes to their contexts, which is now pos-
sible because the graph itself need not be changed). By using Haskell’s imperative
state transformers this optimization can be improved eventually resulting in an
optimal O(n + €) running time, see Sect. 5.1.

5 Using Imperative Data Structures

The use of imperative data structures has two aspects: first, we can use imper-
ative functions as carrier maps in extended source or target ADTs, and we can
thus exploit efficient imperative constructors or destructors without affecting ref-
erential transparency. Second, we can use completely imperative data structures
for stream ADTs.

19

5.1 Imperative Constructors and Destructors

As an example we consider the specialized graph destructor dGraph’. The goal
is to implement the node set imperatively, for example, by using an imperative
array. In Haskell we have to encapsulate state changing operations within a
state thread which roughly works according to the following scheme: open a
state thread, create variables, perform all updates, and close the state thread
possibly returning a value.

Now it seems that ADT folds and transformers do not harmonize with this
way of imperative programming because a fold or transformer produces results
incrementally: decompose a value x yielding a value y, return the nonrecursive
part of y, and continue folding the recursive part of y. Concerning dGraph’ this
means that in each decomposition step contexts are delivered as well as the node
set 1s updated. In contrast, a state transformer does not allow to emit values
out of a running computation; a value can be returned at the earliest after all
updates have been performed.

So can we use state transformers at all to implement the node set in the
graph destructor imperatively? A possible solution is to place a state transformer
in the carrier map where it imperatively updates a node array as desired and
accumulates the contexts that are computed during the decomposition in a list.
This list is returned as the result of the transformer. The destructor of the
extended ADT is then simply an ordinary list destructor that just decomposes
the list of contexts obtained by the carrier map. The definition of an imperative
graph destructor is shown below.

dGraphI :: StkGraph a b->STArray s Node Bool->ST s [Context a bl
dGraphI ([],_) _ = return []
dGraphI (v:vs,g) a =
if isEmpty g then
return []
else do {
b <- readSTArray a v;
if b then do {
cs <- dGraphI (vs,g) a;
return cs }
else do {
let {c = context v g; suc = map snd (g4 c)};
writeSTArray a v True;
cs <- dGraphl (suc++vs,g) a;
return (c:cs)

}

If the stack or the graph is empty, an empty list of contexts is returned. Oth-
erwise, the array is inspected at index v, the node on top of the stack, and two
cases have to be distinguished: (i) If b is True, that is, if we have already visited

20

v before, we simply continue determining the list of contexts cs for the remain-
ing nodes on the stack vs, and we return this list as a result. (ii) If we have
not seen v before, we extract v’s context ¢ and select the successor nodes of c.
After that we update the array at index v to remember that v has now been
processed. Then we proceed similarly to case (i): determine the list of contexts
for the remaining stack onto which the successors are pushed, and return this
list extended by c.
We can now define the function mDfs which is to be used as a carrier map:

mDfs :: StkGraph a b -> [Context a b]

mDfs (s,g) = runST (do {a <- newSTArray (nodeRange g) False;
cs <- dGraphI (s,g) a;
return cs})

With do we create a state thread in which we first allocate a boolean array
indexed by the nodes of the graph to be traversed. This array is initialized to
False indicating that no node is visited yet. Then we determine and return the
list of graph contexts with the imperative destructor just described. This state
thread is then executed with the language primitive runST.

Note that the imperative graph destruction is completely hidden within mDfs.
We can now define an extended ADT by:

graphl :: ADT2 () (StkGraph a b) (Linear (Context a b)) [Context a b]
graphI = ADT2 (_->([],empty)) mDfs dList

Maybe a bit confusing is the fact that the second carrier of graphI is just a list
of contexts; nothing about graphs is mentioned. This reflects the fact that the
essential computation of graphlI is contained in the carrier map and not in the
destructor — the destructor just passes the results.

Finally, we get for depth-first search:

dfsnl = transS (mapFst q2) graphI list

dfsI g = dfsnI (nodes g,g)

For graphs that are represented as (immutable) arrays of adjacency lists, dfsI
now runs in linear, that is, O(n + €), time which is asymptotically optimal.

5.2 Completely Imperative Data Structures

When we consider ADT streams, we observe that intermediate ADTs (like set
in remdup and pqueue in heapsort) are completely single-threaded. Hence, we
can employ a completely imperative implementation of those ADTs. This can
again be achieved with the help of ADT2; the general procedure is as follows.
Consider an ADT

1t ADT s g t

s
s = ADT c d

21

and an ADT stream
f =viaashb

If s i1s canonically derived from an algebraic data type, then s can be omitted
altogether, that is, the well-known fusion law (which is still valid in this extended
framework, see [5]) can be applied, and we can directly rewrite f as transit a b.
Otherwise, some real computation takes place in the constructor ¢ and/or in the
destructor d. We have then to reformulate s as

s’ :: ADT2 s t g ¢’
s’ = ADT2 ¢’ m 4’

so that ¢’ just collects values delivered by des a and d’ only passes values from
t’ to be consumed by con b. This means that the actual computation must
happen within m, and this can be realized by a state monad.

For example, with regard to remdup we can define an extended ADT set’:

set’ :: Ix a => ADT2 (Linear a [a]) [a] (Linear a) [al
set’ = ADT2 cList hash dList

where the function hash realizes the set semantics by first inserting and then re-
trieving elements from an a-indexed boolean array (thereby ignoring duplicates).

5.3 Fusing Carrier Maps with Constructors/Destructors

It is striking that in dGraphI the list of contexts is built only to be later decom-
posed by the destructor of graphI. So we can try to remove this intermediate
list by fusing the functions mDfs and dList. This should be routine work for
deforestation [19, 9, 17], but it is complicated here by the fact that fusion must
work across state thread boundaries. How this can be done has been described
by Launchbury in [11]. Using function product:

infixr 8 ><
(f >< g) (x,y) = (£ x,8 y)

we can define the map function for the ST functor by:
map £ st = (£ >< id) . st

This means that £ mapped to a state transformer st gives a new state trans-
former that computes the same state as st, but returns a value £ x instead of
x. In practice this means to move f over sequential updates and to move f into
return statements:

map £ (do s; ss) = do s; map f ss
map £ (do v <- s; ss) = do v <- s; map f ss
map f (return x) return (f x)

22

With £ = mapFst g2 and s = nodes g we obtain for dfsI:

dfsI g

= dfsnl (s,g)

= transS f graphI list (s,g)

= hylo (cList.f) dList (mDfs (s,g))

Now we can move the complete hylo expression into mDfs. In order to achive
anything useful we have to move further into dGraphI. Since

hylo (cList.f) dList [1 = I[]

and since the result of recursive function calls are inductively assumed to be
already correct, we only have to change the last return statement, that is,
return only the node v (which is just the result of q2 ¢) instead of the whole
context c. Altogether we obtain the optimized implementation for depth-first
search shown below.

dfsnI’ ([],_) _ = return []
dfsnI’ (v:vs,g) a =
if isEmpty g then
return []
else do {
b <- readSTArray a v;
if b then do {
cs <- dfsnI’ (vs,g) a;
return cs }
else do {
let {c = context v g; suc = map snd (g4 c)};
writeSTArray a v True;
cs <- dfsnI’ (suc++vs,g) a;
return (v:cs)

dfsI’ :: Graph a b -> [Nodel

dfsI’ g = runST (do {a <- newSTArray (nodeRange g) False;
cs <- dfsnI’ (nodes g,g) a;
return csl})

5.4 A Simple ADT Optimizer

A very simple optimizing strategy is to substitute transformers based on a li-
brary of available ADTs with specialized constructors, destructors or completely
imperative ADTs. This pressumes that ADTs and their specializations are made
known to the optimizer. For example, if somebody has implemented graphI, he

23

or she has to place the code into a specific place and has to announce that this is
a destructor-specialized implementation of the ADT graph (for example, extend
a function Specp by Specp(graph) = graphI). Then an optimizer can exploit
specialized ADTs along the following scheme:

transitST a’ b’ if Specp(a) =
transitS a’ b if Specp(a) =
transitT a b’ if Spec(b) =
transit a b otherwise
transS f a’ b if Specp(a) = a’
{trans f a b otherwise

)
)
)

Opt(transit a b) =

Opt(trans f a b) =

Of course, the optimizer works correctly only if the preconditions of Theorems
2, 3, and 4 are satisfied for the known ADTs, and there should be an explicit
deforestation pass following the application of Opt to eliminate gluing lists, etc.

6 Related Work

The generalization of list fold to regular algebraic data types has been thoroughly
investigated [12, 13, 16, 14, 6]. In particular, exploiting fold’s fixed recursion
pattern for developing optimizers for functional languages has attracted much
interest [9, 16, 17, 10]. However, defining folds for abstract data types has been
almost neglected so far. Despite proposals for specific types, such as arrays [1] or
graphs [8, 2], it is only Fokkinga [7] who attacks the problem from a general point
of view. In his approach terms are represented by combinators, and equations
are represented by pairs of such combinators. His treatment is done completely
in categorical language, and although his proposal generalizes the case of free
data types, it still constrains homomorphisms to map to quotients.

There are quite a lot of papers on the theory and use of monads — recently,
Phil Wadler gave a nice survey [20] that contains most of the relevant references,
but we are not aware of any work that tries to sweep monads under the rug.

7 Conclusions

We have demonstrated how to systematically insert efficient imperative data
structures into functional programs. This can be automated provided that (i)
programs are written in metamorphic style (that is, by using ADT transformers)
and (ii) specialized, imperative ADT versions are supplied and are made known
to an optimizer.

The presented programming style, extending the structured recursion disci-
pline to abstract data types, also extends its optimization opportunities from
mere fusion to the utilization of imperative data structures and algorithms.

24

References

(1]

[10]

[11]
[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

T.-R. Chuang. A Functional Perspective of Array Primitives. In 2nd Fuji Int.
Workshop on Functional and Logic Programming, pages 71-90, 1996.

M. Erwig. Functional Programming with Graphs. In 2nrnd ACM Int. Conf. on
Functional Programming, pages 52—65, 1997.

M. Erwig. Categorical Programming with Abstract Data Types. In 7th Int. Conf.
on Algebraic Methodology and Software Technology, 1998. To appear in LNCS.
M. Erwig. Diets for Fat Sets. Journal of Functional Programming, 8(6), 1998.
M. Erwig. Metamorphic Programming: Structured Recursion for Abstract Data
Types. Technical Report 242, FernUniversitat Hagen, 1998.

L. Fegaras and T. Sheard. Revisiting Catamorphisms over Datatypes with Em-
bedded Functions. In 28rd ACM Symp. on Principles of Programming Languages,
pages 284-294, 1996.

M. M. Fokkinga. Datatype Laws without Signatures. Mathematical Structures in
Computer Science, 6:1-32, 1996.

J. Gibbons. An Initial Algebra Approach to Directed Acyclic Graphs. In Mathe-
matics of Program Construction, LNCS 947, pages 282-303, 1995.

A. Gill, J. Launchbury, and S. L. Peyton Jones. A Short Cut to Deforestation.
In Conf. on Functional Programming and Computer Architecture, pages 223-232,
1993.

7. Hu, H. Twasaki, M. Takeichi, and A. Takano. Tupling Calculation Eliminates
Multiple Data Traversals. In 2nd ACM Int. Conf. on Functional Programming,
pages 164-175, 1997.

J. Launchbury. Graph Algorithms with a Functional Flavour. In 1st Int. Spring
School on Advanced Functional Programming, LNCS 925, pages 308-331, 1995.
G. Malcolm. Homomorphisms and Promotability. In Mathematics of Program
Construction, LNCS 375, pages 335-347, 1989.

E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. In Conf. on Functional Programming and
Computer Architecture, pages 124-144, 1991.

E. Meijer and G. Hutton. Bananas in Space: Extending Fold and Unfold to Expo-
nential Types. In Conf. on Functional Programming and Computer Architecture,
pages 324-333, 1995.

C. Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

T. Sheard and L. Fegaras. A Fold for all Seasons. In Conf. on Functional Pro-
gramming and Computer Architecture, pages 233242, 1993.

A. Takano and E. Meijer. Shortcut Deforestation in Calculational Form. In Conf.
on Functional Programming and Computer Architecture, pages 306-313, 1995.

P. Wadler. Theorems for Free! In Conf. on Functional Programming and Computer
Architecture, pages 347-359, 1989.

P. Wadler. Deforestation: Transforming Programs to Eliminate Trees. Theoretical
Computer Science, 73:231-284, 1990.

P. Wadler. How to Declare an Imperative. ACM Computing Surveys, 29(3):240—
263, 1997.

25

