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APPENDIX: RECONSTRUCTION ENTROPY AND VIEW
QUALITY MEASURE
We measure the quality of a camera view by how much the un-
certainty of reconstruction would be reduced when scanning from
that view. Since we adopt the volumetric representation (TSDF) for
depth fusion, we measure the uncertainty of reconstruction based
on the probabilistic model for TSDF described in [Curless 1997].
Given a view vi and the corresponding depth image di , we assume
that the depth of a pixel (j,k) in the depth image can be modeled
by a 1D Gaussian distribution: di [j,k] ∼ N (Si [j,k],σ

2
i [j,k]), where

σ 2
i [j,k] is the variance of depth measurement along the line of sight

passing through pixel (j,k) from view vi . Si [j,k] is the intersection
of that line of sight with the reconstructed surface S .
In depth fusion based reconstruction [Curless and Levoy 1996],

a TSDF is constructed to store sums of weighted signed distances,
as well as sums of weights. The weights across the zero level set
correspond to the reciprocals of accumulated variances, σ 2

t , which
provides a measure of reconstruction uncertainty at time t . For
example, the update of the accumulated variance along the line of
sight of pixel (j,k) from t to t + 1, given the depth measurement of
a new view vn can be written as:

(σ 2
t+1[j,k])

−1 = (σ 2
t [j,k])

−1 + (σ 2
n [j,k])

−1. (1)
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Given that the entropy of a 1D Gaussian is 1
2 ln(2πeσ

2), we can
compute the information gain from t to t + 1, given view vn , as:

It+1 =
1
2 ln(

σ 2
t

σ 2
t+1

) =
1
2 ln(1 +

σ 2
t

σ 2
n
). (2)

Writing it in terms of pixels of the depth image corresponding to
view vn , we have:

It+1(vn ) =
1
2

∑
j,k

ln
(
1 +

σ 2
t [j,k]

σ 2
n [j,k]

)
d2n [j,k]

f 2 | ®nz [j,k]|
, (3)

where dn [j,k] is the depth value for pixel (j,k), in the virtual depth
image from view vn , generated by sampling the current reconstruc-
tion St . f is the focal length of the depth camera. ®nz [j,k] is the
z-component of the surface normal at pixel (j,k). d2

n [j,k ]
f 2 | ®nz [j,k ] |

is the
differential area on the reconstructed surface corresponding to pixel
(j,k) (see [Krainin et al. 2011]).

The key to computing the information gain in Equation (3) is the
estimation of variance σ 2

n for each pixel. For a pixel whose line of
sight intersects with the reconstructed surface (at a known voxel),
the estimation of the standard deviation is given by the following
experimental equation (measured in mm) found by Fankhauser et
al. [2015]:

σn (d,θ ) = 1.5 − 0.5d + 0.3d2 + 0.1d
3
2 θ2/(90◦ − θ ),

with d being the depth value for a pixel in the virtual depth image
from view vn , generated by sampling the current reconstruction
St . θ is the angle between the line of sight and the surface normal
at the intersection. For a pixel whose line of sight shoots into an
unknown voxel, we directly compute the information gain as the
maximum variance, with a standard deviation of 5cm.
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