
A PROOFS

Proposition 1. Given a linear 3D tensor field T (x,y,z) = T0 + xTx +
yTy + zTz, any tensor value can occur at most once in the domain.
Moreover, if a tensor value appears in the domain, its multiples cannot
occur anymore in the field.

Proof. Given a tensor t, the invertibility of F implies that there cannot
be multiple (x,y,z,1,0) that map to the same tensor. Therefore, a tensor
cannot occur multiple times in the field. Additionally, since F−1 is
linear, when we scale t by some r 6= 1 we get F−1(rt) = rF−1(t) =
(rx,ry,rz,r,0), so its w coordinate must be r 6= 1. Since w must be 1
for a tensor to occur in the field, rt cannot occur in the field.

Theorem 2. Let t be a degenerate tensor that occurs in a linear tensor
field T (x,y,z) = T0+xTx+yTy+zTz, and v be its dominant eigenvector.
Then vT T v = 0.

Proof. Since t is degenerate, it has the form t = k(vvT − I
3 ) for some

k ∈ R. For t to occur in the field, we need u = T−1(t) = 0. Therefore,

u = 〈T , t〉= 0 (22)

trace[k(vvT − I
3
)T ] = 0 (23)

This is equivalent to

trace(vvT T − T
3
) = 0 (24)

or
trace(vvT T ) =

1
3

trace(T ) (25)

Since T is traceless, the above equation becomes

trace(vvT T ) = 0 (26)

Applying the cyclic property of trace [7], we have

trace(vT T v) = trace(vvT T ) = 0 (27)

Since vT T v is a 1×1 matrix, we have

vT T v = trace(vT T v) = 0 (28)

Theorem 3. Given a linear tensor field T (x,y,z) = T0 + xTx + yTy +

zTz and a unit vector v that satisfies vT T v = 0, there exist x0,y0,z0 ∈
R such that T (x0,y0,z0) is a degenerate tensor and v is a dominant
eigenvector of T (x0,y0,z0). The dominant eigenvalue is given by k =

1
vT T ′0 v .

Proof. Note that v is the dominant eigenvector of the tensor t = k(vvT −
I
3 ), for all k 6= 0. We must choose k so that t occurs in the field. Since
vT T v = 0, we have 0 = kvT T v = trace(kvT T v) = trace(kvvT T ) =
trace(kvvT T )− trace(k I

3 T ) = trace(k(vvT − I
3 )T ) = 〈T , t〉. This im-

plies that T−1(t) gives u = 0. Next, we must ensure that w = 1.

1 = w = 〈T ′0, t〉 (29)

= trace[k(vvT − I
3
)T ′0] (30)

= k trace(vvT T ′0)−
k
3

trace(T ′0) (31)

= k trace(vvT T ′0) (32)

= kvT T ′0v (33)

Therefore,

k =
1

vT T ′0v
(34)

With k set to this value, t occurs in the field. This implies that k is
unique.

Theorem 4. ∀w,x,y,z∈R, let v1, v2, and v3 be respectively the major,
medium, and minor eigenvectors of a neutral tensor t = wT0 + xTx +
yTy + zTz. Then vT

1 T v1 = vT
3 T v3.

Proof. Recall that T has a zero dot product with t = wT0 + xTx + yTy +

zTz, i.e., trace(tT ) = 0. Since t is neutral, it has the form t = k(v1vT
1 −

v3vT
3 ) for some k. Consequently,

trace[(v1vT
1 − v3vT

3 )T ] = 0 (35)

This is equivalent to

trace(v1vT
1 T ) = trace(v3vT

3 T ) (36)

Reusing the cyclic property of trace, we obtain

trace(vT
1 T v1) = trace(vT

3 T v3) (37)

Again, both vT
1 T v1 and vT

3 T v3 are 1× 1 matrices, we have vT
1 T v1 =

vT
3 T v3.

Theorem 5. Given a medium eigenvector v2 which resides on the
k-th level set of vT T v, the corresponding major and minor eigenvectors
must reside on the − k

2 -th level set of vT T v.

Proof. Notice that vT
1 T v1 + vT

2 T v2 + vT
3 T v3 = trace(V T TV ) where

V =
(
v1 v2 v3

)
. We have trace(V T TV ) = trace(T ) = 0 since T

is traceless. Consequently,

vT
1 T v1 + vT

2 T v2 + vT
3 T v3 = 0 (38)

Since vT
1 T v1 = vT

3 T v3 (Theorem 4), we have that 2vT
1 T v1+vT

2 T v2 = 0,

i.e., vT
1 T v1 = vT

3 T v3 =−
vT

2 T v2
2 .

Theorem 6. Under the structurally stable condition that T is non-
degenerate, a level set of vT T v on the unit sphere must be two non-
intersecting non-circular spherical ellipses, except one situation where
it is the union of two great circles, residing in two intersecting planes.

Proof. Since the unit sphere remains the same under any orthonormal
change of basis, we can find such a basis under which T is diagonal,

i.e.,

a 0 0
0 b 0
0 0 −a−b

 where a≥ b≥ 0 and a > 0.

Under this basis, it is straightforward to verify that a level set of
vT T v on the unit sphere is the intersection of

aα
2 +bβ

2− (a+b)γ2 = k (39)

α
2 +β

2 + γ
2 = 1 (40)

which is equivalent to

(2a+b)α2 +(a+2b)β 2 = k+(a+b) (41)

α
2 +β

2 + γ
2 = 1 (42)

which is the union of two ellipses (thus planar) with inversive symmetry.
Additionally, we get the equations

(a−b)α2− (a+2b)γ2 = k−b (43)

α
2 +β

2 + γ
2 = 1. (44)

When k = b the level set satisfies either

α =

√
a+2b
a−b

γ (45)

α
2 +β

2 + γ
2 = 1 (46)



or

α =−
√

a+2b
a−b

γ (47)

α
2 +β

2 + γ
2 = 1 (48)

These are the intersections of the unit sphere with two intersecting
planes, both of which contain the origin. Consequently, the level set
consists of two great circles.

Proposition 7. Given a unit vector v, the tensor at (x,y,z) has v as
its medium eigenvector if and only if

M

x
y
z

=−T0v (49)

where M is the matrix
[
Txv Tyv Tzv

]
.

Proof. A traceless tensor T (x,y,z) is neutral and has medium eigen-
vector v if and only if

T (x,y,z)v = 0. (50)

Substituting the field, we get

(T0 + xTx + yTy + zTz)v = 0 (51)
xTxv+ yTyv+ zTzv =−T0v. (52)

which can be rewritten as Equation 49.

Theorem 8. Given a unit vector v where the projection of T onto the
plane orthogonal to v is a degenerate two-dimensional tensor, the set of
points on the neutral surface that have v as their medium eigenvector
is a line.

Proof. Usually Equation 49 gives a unique point (x,y,z) for each v.
However, if M is singular then this fails. If M is singular and T0v is not
in its image then this gives an infinity point of the neutral surface. T0v
is in its image so there is a line of possible v.

B SINGULARITY LINE FORMULA

In this section we provide the detail of finding the 3D coordinates of a
neutral point corresponding to one of the singularities in the medium
eigenvector manifold (Section 5.2).

Let O be a singularity of a linear tensor field T0 + xTx + yTy + zTz
whose corresponding medium eigenvector is s. Since O corresponds
to a topological circle (a straight line in R3), we need an additional
parameter u, a unit vector perpendicular to s, to identify individual
points on the line.

From Proposition 7, we know that the 3D coordinates (x,y,z) of a
neutral point can be found from a given medium eigenvector v byx

y
z

=−
[
Txv Tyv Tzv

]−1 T0v (53)

Thus, the point on the infinite line that corresponds to the vector u is
the following limit:

− lim
η→0

[
Tx(s+ηu) Ty(s+ηu) Tz(s+ηu)

]−1 T0(s+ηu) (54)

For convenience, we name the following variables:

Ms =
[
Txs Tys Tzs

]
(55)

Mu =
[
Txu Tyu Tzu

]
(56)

vs = T0s (57)
vu = T0u (58)

Consequently, the limit in Equation 54 can be rewritten as

− lim
η→0

(Ms +ηMu)
−1(vs +ηvu) (59)

This is equivalent to

− lim
η→0

ad j(Ms +ηMu)(vs +ηvu)

|Ms +ηMu|
(60)

where ad j(M) and |M| are the adjoint matrix and the determinant of
the matrix M, respectively.

It can be verified that

lim
η→0

ad j(Ms +ηMu)(vs +ηvu) = ad j(Ms)vs = 0 (61)

and that

lim
η→0
|Ms +ηMu|= |Ms|= 0 (62)

Consequently, to evaluate the limit in Equation 60 we apply
L’hospital’s rule, i.e.

−
limη→0

d
dη

[ad j(Ms +ηMu)(vs +ηvu)]

limη→0
d

dη
|Ms +ηMu|

(63)

From classical matrix calculus results, we have

lim
η→0

d
dη
|Ms +ηMu|= trace(ad j(Ms)Mu) (64)

and

lim
η→0

d
dη

[ad j(Ms +ηMu)(vs +ηvu)]

= Γvs +ad j(Ms)vu (65)

where

Γ = lim
η→0

d
dη

[ad j(Ms +ηMu)]

= M−1
s [trace(ad j(Ms)Mu)I−Muad j(Ms)]vs +ad j(Ms)vu (66)

C HIGHER-RESOLUTION IMAGES

In Figure 12 we show higher-resolution images of Figure 11 (a-d).
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Fig. 12: Higher-resolution images of Figure 11 (a-d).


