
Abstract 
Cluster ensembles generate a large number of dif-
ferent clustering solutions and combine them into a 
more robust and accurate consensus clustering. On 
forming the ensembles, the literature has suggested 
that higher diversity among ensemble members 
produces higher performance gain. In contrast, 
some studies also indicated that medium diversity 
leads to the best performing ensembles. Such con-
tradicting observations suggest that different data, 
with varying characteristics, may require different 
treatments. We empirically investigate this issue by 
examining the behavior of cluster ensembles on 
benchmark data sets. This leads to a novel frame-
work that selects ensemble members for each data 
set based on its own characteristics. Our framework 
first generates a diverse set of solutions and com-
bines them into a consensus partition P*. Based on 
the diversity between the ensemble members and 
P*, a subset of ensemble members is selected and 
combined to obtain the final output. We evaluate 
the proposed method on benchmark data sets and 
the results show that the proposed method can sig-
nificantly improve the clustering performance, often 
by a substantial margin.  In some cases, we were 
able to produce final solutions that significantly 
outperform even the best ensemble members. 

1 Introduction 
A fundamental challenge in clustering is that different clus-
tering results can be obtained using different clustering algo-
rithms and it is difficult to choose an appropriate algorithm 
given a data set. Cluster ensembles address this issue by gen-
erating a large set of clustering results and then combining 
them using a consensus function to create a final clustering 
that is considered to encompass all of the information con-
tained in the ensemble. Existing research on cluster ensem-
bles has suggested that the diversity among ensemble mem-
bers is a key ingredient for the success of cluster ensembles 
[Fern and Brodley, 2003], noting that higher diversity among 
ensemble members tends to produce higher performance 
gain. In contrast, some studies have also indicated that a me-
dium level of diversity is preferable and leads to the best 
performing ensembles [Hadjitodorov et al., 2006]. Such 
seemingly contradicting observations can be explained by 
the fact that each data set has its own characteristics and may 

require a distinct treatment. A few recent studies have inves-
tigated the question of how to design or select a good cluster 
ensemble using diversity-related heuristics [Hadjitodorov et 
al., 2006; Fern and Lin, 2008]. While it has been shown that 
cluster ensemble performance can be improved by the pro-
posed heuristics, they are designed to be universally applica-
ble for all data sets. This is problematic as different data sets 
pose different challenges, and it is likely that such differ-
ences require different strategies for selection. This moti-
vates our work reported in this paper. In particular, based on 
our investigation on cluster ensembles’ behavior using a set 
of four training data sets, we propose to form an ensemble 
based on the characteristics of the given data set so that the 
resulting ensemble is best suited for that particular data set. 

In particular, we first generate an ensemble �, which con-
tains a diverse set of solutions, and then aggregate � into a 
single partition P* using a consensus function. Different 
from traditional methods, we do not output P* as the final 
solution. Instead, we use P* to gain understanding of the 
ensemble �. Specifically, we measure the difference be-
tween the ensemble members and the consensus partition P* 
to categorize the given data set into a stable or non-stable 
category. Our experiments on the four training data sets indi-
cated clear differences between these two categories, which 
necessitates a different treatment for each category. Accord-
ingly, our method selects a special range of ensemble mem-
bers based on the categorization to form the final ensemble 
and produce the consensus clustering. We empirically vali-
date our method using six testing data sets. The results dem-
onstrate that by adaptively selecting the ensemble members, 
our method significantly improves the cluster ensemble per-
formance. We further compare to a state-of-the-art ensemble 
selection method and our approach achieved highly competi-
tive results, and demonstrated significant benefit for data sets 
in the non-stable category. 

2 Background and Related Works 
Below we review the basic steps in clustering ensembles and 
some recent developments on cluster ensemble design.  

2.1  Ensemble Generation   
It is commonly accepted that for cluster ensembles to work 
well the member partitions need to be different from one 
another. Many different strategies have been used to generate 
the initial partitions for a cluster ensemble. Examples in-
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clude: (1) using different clustering algorithms to produce 
the initial partitions [e.g., Strehl and Ghosh, 2003]; (2) 
changing initialization or other parameters of a clustering 
algorithm [e.g., Fern and Brodley, 2004]; (3) Using different 
features via feature extraction for clustering [e.g., Fern and 
Brodley, 2003]; and (4) partitioning different subsets of the 
original data [e.g., Strehl and Ghosh, 2003].  

2.2 Consensus Function 
Once a set of initial partitions are generated, a consensus 
function is used to combine them and produce a final parti-
tion. This has been a highly active research area and numer-
ous consensus functions have been developed. We group 
them into the following categories: (1) Graph based methods, 
[Strehl and Ghosh, 2003, Fern and Brodley, 2004]; (2) rela-
beling based approaches [Dudoit and Fridlyand, 2003]; (3) 
Feature-based approaches [Topchy et al., 2003]; and 4) Co-
association based methods [Fred and Jain, 2000].   
Note that here we do not focus on ensemble generation or 
consensus functions. Instead, we assume that we are given an 
existing ensemble (and a consensus function), and investi-
gate how to select a subset from the given ensemble to im-
prove the final clustering performance.  

2.3 Diversity and Ensemble Selection  
Existing research revealed that the diversity among the en-
semble members is a vital ingredient for achieving improved 
clustering performance [Fern and Brodley, 2003]. In this 
section we will first review how diversity is defined and then 
discuss some recent developments on using diversity to de-
sign cluster ensembles. 
Diversity Measures. Existing literatures have devised a 
number of different ways to measure the diversity of ensem-
ble members [Hadjitodorov et al., 2006]. Most of them are 
based on label matching between two partitions. In essence, 
we deem two partitions to be diverse if the labels of one par-
tition do not match well with the labels of the other. Two 
measures commonly used in the literature are the Adjusted 
Rand Index (ARI) [Hubert and Arabie, 1985] and the Nor-
malized Mutual Information (NMI) [Strehl and Ghosh, 2003]. 
Note that both measures can be used in our framework. We 
experimented with both measures in our investigation, and 
they produced comparable results. In this paper, we present 
results obtained using NMI as the diversity measure. 
Ensemble Selection. After generating the initial partitions, 
most of the previous methods used all generated partitions 
for final clustering. This may not be the best because some 
ensemble members are less accurate than others and some 
may have detrimental effects on the final performance. Re-
cently a few studies sought to use the concept of diversity to 
improve the design of cluster ensemble by selecting an en-
semble from multiple ensembles [Hadjitodorov et al., 2006], 
by selecting only a subset of partitions from a large library of 
clustering solutions [Fern and Lin 2008], or by assigning 
varying weights to different partitions [Li and Din, 2008]. 

Hadjitodorov et al. [2006] generate a large number of 
cluster ensembles as candidate ensembles for selection, and 

they rank all ensembles based on their diversity. They pro-
pose to choose ensembles with median diversity based on 
empirical evidence suggesting that such ensembles are often 
more accurate than others for data sets that were tested in 
their experiments.   

Note that the above method is not directly comparable to 
our method because it requires generating a large number of 
candidate ensembles. In contrast, we assume that we are giv-
en an existing ensemble and try to select a subset from it, 
which is defined as the cluster ensemble selection problem 
by Fern and Lin [2008]. In their paper, Fern and Lin investi-
gated a variety of heuristics for selecting subsets that con-
sider both the diversity and quality of the ensemble mem-
bers, among which the Cluster and Select method was em-
pirically demonstrated to achieve the most robust perform-
ance. This method first clusters all ensemble members and 
then selects one solution from each cluster to form the final 
ensemble. In our experiments we will compare with this 
method and refer to it as CAS_FL. 
    Note that the above reviewed methods are fundamentally 
different from ours because they aim to design selection heu-
ristics without considering the characteristics of the data sets 
and ensembles. In contrast, our goal is to select adaptively 
based on the behavior of the data set and ensemble itself. 

3 Adaptive Ensemble Selection  
In this section, we will first describe our initial investigation 
on four training data sets that informed our design choices.  

3.1 Ensemble System Setup 
Below we describe the ensemble system setup we used in our 
investigation. This includes how we generate the ensemble 
members, and the consensus function used to combine the 
partitions.  Note that our proposed system is not limited to 
these choices; other methods can be used as well.  
Ensemble Generation. Given a data set, we generate a clus-
ter ensemble of size 200 using two different algorithms to 
explore the structure of the data. The first is K-means, which 
has been widely used in cluster ensemble research as a basis 
algorithm for generating initial partitions of the data due to 
its simplicity and its unstable nature when different initializa-
tions are used.  

In addition to K-means, we also introduce a new cluster-
ing algorithm, named Maximal Similar Features (MSF), for 
producing the ensemble members. This algorithm is chosen 
because one of our companion investigations (unpublished) 
has shown that MSF works well together with K-means for 
generating diverse cluster ensembles. In particular, when 
these two algorithms are used together, the resulting ensem-
bles tend to outperform those generated by K-means or MSF 
alone. Below we describe the MSF algorithm. 

MSF works in an iterative fashion that is highly similar to 
K-means. In particular, it begins with an initial random as-
signment of data points into k clusters, where k is a pre-
specified parameter. After the initial assignment, the algo-
rithm iteratively goes through the re-estimation step (i.e., re-
estimate the cluster centers) and the re-assignment step (i.e.,  
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re-assign data points to their most appropriate clusters).  
In MSF, the center re-estimation step is exactly the same 

as K-means, which simply computes the mean of all data 
points in the same cluster. The critical difference comes from 
the re-assignment step. Recall that in K-means, to reassign a 
data point to a cluster, we compute its Euclidean distances to 
all cluster centers and assign it to the closest cluster. In con-
trast, MSF considers each feature dimension one by one, and 
for each feature it assigns a data point to its closest center. 
Note that different features may vote for the data point to be 
assigned to different clusters and MSF assigns it to the clus-
ter that has the most votes, or in other words, has the Maxi-
mal Similar Features.  
Consensus Function. To combine the initial partitions, we 
choose a popular co-association matrix based method that 
applies standard hierarchical agglomerative clustering with 
average linkage (HAC-AL) [Fisher and Buhmann, 2003; 
Fern and Brodley, 2003] as the consensus function.  
    While one might suspect that the choice of consensus 
function will play an important role in the performances that 
we achieve, our initial investigation using an alternative con-
sensus function introduced by Topchy et al. [2003] sug-
gested that our results were robust to the choice of the con-
sensus function.  

3.2 Ensemble Performance versus Diversity  
We apply the above described cluster ensemble system to 
four benchmark data sets from the UCI repository: Iris, Soy-
bean, Thyroid and Wine [Blake and Merz].  
 For each data set, we generate an ensemble of size 200 
�={P1, P2, …, P200}, using K-means and MSF. For each of 
the 200 partitions, K, the number clusters, is set to be a ran-
dom number drawn between 2 and 2*C, where C is the total 
number of known classes in the data. We then apply HAC-
AL to the co-association matrix to produce a consensus parti-
tion P* of the data, where K, the number of clusters, is C. 

 In attempt to understand the behavior of the cluster en-
sembles, we examined the diversity between the ensemble 
members and the consensus partition P*. In particular, we 
compute the NMI values between Pi and P*, for i=1, …, 200. 
Inspecting these NMI values, we found that the four data sets 
demonstrate drastically different behavior that can be rough-
ly grouped into two categories. The first category contained 
the Iris and Soybean data sets, for which majority of the en-
semble members were quite similar to P* (NMI values >0.5).  
In contrast, the other two data sets showed an opposite trend. 
We will refer to the first category as the stable category to 
reflect the belief that the structure of the data set is relatively 
stable such that most of the ensemble members are similar to 
one another. The second category is referred to as non-
stable. In this case, the final consensus partition, which can 
be viewed as obtained by averaging the ensemble members, 
is dissimilar to the members. This fact suggests that the en-
semble contains a set of highly different clustering solutions. 
In this case, we can argue that the clustering structure of the 
data is unstable. The distinction between the two categories 
can be easily seen from Table 1, which shows the average 
NMI values for the four data sets computed as described 

above. In column 3, we show the number of ensemble mem-
bers that are similar to P* (with NMI > 0.5).  

Table 1. The diversity of ensemble members with re-
gards to P* and the data set categorization 

Name Average NMI # of ensemble with 
NMI >0.5 Class 

Iris 0.693 197 S 
Soybean 0.676 179 S 

Wine 0.471 85 NS 
Thyroid 0.437 61 NS 

See Figure 1 for a more complete view of the distribution 
of the NMI values for the four data sets. In particular, for 
each data set it shows a histogram for the NMI values. The 
x-axis shows the NMI values and the y-axis shows the num-
ber of ensemble members at that particular NMI value. 

This suggests that we can classify an ensemble into one of 
the two categories, Stable(S) or Non-stable (NS), based on 
the diversity (as measured by NMI) between ensemble mem-
bers and the final consensus partition. In particular, we clas-
sify an ensemble as stable if its average NMI values between 
the ensemble members and P* is greater than �=0.5. Alterna-
tively, one can also classify an ensemble as stable if more 
than 50% of its ensemble members have NMI (with P*) val-
ues larger than �=0.5. 

 
Figure 1. The distribution of ensemble members di-
versity with regards to P*. 

Note that in our experiments, the categorization of a data set 
is highly stable from run to run and also appears to be not 
sensitive to the exact choice of � as long as it is within a rea-
sonable margin (e.g., [0.48-0.52]). Further, we expect this 
margin to increase as we increase the ensemble size. 

We conjectured that the stable category will require a dif-
ferent treatment from the non-stable category in ensemble 
selection design. To verify this conjecture, we devised four 
simple subsets of the ensemble members, according to their 
NMI values with P*. In particular, given a cluster ensemble 
�, and its consensus partition P*, we first sort all ensemble 
members according to their NMI with P* in decreasing or-
der. We then define four subsets of interest as 1) all ensem-
ble members (Full); 2) the first half of the ensemble mem-
bers (Low diversity to P*); 3) the second half of the ensem-
ble members (High diversity from P*); 4) the medium half of 
the ensemble members (M). 

In Table 2, we see that our conjecture was confirmed for 
these data sets. In particular, we see that for the stable data 
sets, the first two options (F and L) work the best, whereas 
for the non-stable data sets, the third option (H), which con-
tains ensemble members that are highly different from P*, 
works the best.  
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Table 2. The performance of 4 different subsets.  
Name 1st  (F) 2nd  (L) 3rd (H) 4th  (M) Category

Iris 0.744 0.744 0.640 0.725 S 
Soybean 1 1 0.557 0.709 S 
Thyroid 0.257 0.223 0.656 0.325 NS 

Wine 0.474 0.376 0.680 0.494 NS 
Here we offer some possible explanations for the ob-

served behavior. For the stable data sets, we suspect that the 
ensemble members generally reveal similar structures, and 
the differences mainly come from the slight variance intro-
duced by the clustering procedure. In this case, using F is 
expected to be the best option because variance reduction 
can be maximized. On the other hand, by selecting H for the 
non-stable data sets, we essentially select high diversity solu-
tions. Conceptually, if we map all clustering solutions in the 
ensemble into points in some high dimensional space, P* can 
be viewed as their centroid. By selecting H for the non-stable 
data sets, we choose the outmost quartile of points (solu-
tions), i.e., these solutions that are most diverse from one 
another. Our results suggested that high diversity is desirable 
for the non-stable data sets. This is consistent with previous 
literature where high diversity was shown to be beneficial 
[Fern and Brodley, 2003]. One possible explanation is that in 
such cases the differences among ensemble members may be 
originated from different biases of the clustering procedure. 
To achieve the most bias correction, we need to include a set 
of most diverse solution by selecting subset H. An alterna-
tive explanation is that because most ensemble members are 
dissimilar to P*, it can be argued that the P* is not an appro-
priate result and selecting the most dissimilar ensemble 
members to P* (H) may lead to better results. We can see 
some supporting evidence for this claim in our experimental 
results, especially in Figure 3 of Section 4.4. 

3.3 Proposed Framework  
Given a data set, the proposed framework works as follows.  
� Generate an ensemble � of different partitions.  
� Obtain consensus partition P* by applying a consensus 

function.  
� Compute NMI between ensemble members and P* and 

rank the ensemble members based on the NMI values in 
decreasing order.  

� If the average NMI values > 0.5, classify the ensemble 
as stable and output P*.  

� Otherwise, classify the ensemble as non-stable and se-
lect subset H (the most dissimilar subset from the P*) 
and apply a consensus function to this subset, and output 
the consensus partition. 

4  Experimental Results 
Below we first describe the data sets used in the experiments 
and the basic experiment set up.  

4.1 Experimental Setup   
Our method was designed based on empirical evidence on 
four data sets. We consider these data sets as our training 
sets. To test the general applicability of our method, we need 

to use a new collection of data sets for testing. Toward this 
goal, we perform experiments on six new data sets, including 
the Vehicle, Heart, Pima, Segmentation, and Glass data sets 
from UCI machine learning repository and a real world data 
set O8X from image processing [Gose et al., 1996].   

As described in Section 3.1, we generate our cluster en-
sembles with 100 independent k-means runs and 100 inde-
pendent MSF runs, each with a randomly chosen clustering 
number K, forming ensembles of size 200. The consensus 
function that we use is HAC-AL. Note that our initial ex-
periments on different consensus functions suggested that 
our method is robust to the choice of consensus functions. 

The reported results are the NMI values of the final con-
sensus partitions with the known class labels. Note that the 
class labels are only used for evaluation purpose and not 
used in any part of the clustering procedure. Each value we 
report here is averaged across 100 independent runs. 

4.2 Data Set Categorization  
Recall that the first step of our framework is to generate an 
initial cluster ensemble and classify it into one of the catego-
ries based on the ensemble characteristics. In this section, we 
will present the categorization of each data set. 

With the initial cluster ensemble and its resulting consen-
sus partition P*, we compute the NMI value between each 
ensemble member and the consensus partition P*. The re-
sults are summarized in Table 3. In particular, the first col-
umn lists the name of each data set, and the second column 
provides the average NMI between ensemble members and 
P*. The third column demonstrates the number of ensemble 
members which have an NMI more than 0.5. The last column 
shows the categories to which the data set is assigned based 
on the NMI values. 

It can be seen that the Glass, Vehicle and Segmentation 
data sets are classified as stable data sets because their aver-
age NMI values are greater than 0.5. In contrast, the O8X, 
Heart and Pima data sets are classified as non-stable data 
sets. Note that if we use the alternative criterion of having 
more than half of ensemble members with an NMI more than 
0.5, we obtain exactly the same results.   

4.3 Selecting Subset  
Once we classify a data set, we then move on to the ensem-
ble selection stage and apply the strategy that is most appro-
priate for its category. For stable data sets, we keep the full 
ensemble and directly output the consensus partition P*. For 
non-stable data sets, we choose the H subset in the ensemble, 
i.e., the set that is most diverse from P*.  

Table 3.Categorization of the data sets 

Name Mean 
 NMI 

#members 
NMI >0.5 Class

Segmentation 0.602 169 S 
Glass 0.589 131 S 
Vehicle 0.670 199 S 
Heart 0.241 11 NS 
Pima 0.299 26 NS 
O8X 0.488 91 NS 
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To test the effectiveness of this strategy, we evaluate all 
four subsets as presented in Section 3.2 and show the results 
in Table 4. The numbers shown here are the NMI values 
between the final partition and the ground truth, i.e., the class 
labels. In particular, the 2nd column provides the full ensem-
ble results. The 3rd column records the performance of subset 
L, containing ensemble members that are similar to P*. The 
4th column shows the clustering ensemble result of subset H, 
consisting of the members that are dissimilar to P*. The 5th 
column shows the results of subset M, containing the me-
dium diversity members. For comparison purpose, we also 
show the performance of the best ensemble member in col-
umn six. Finally, the last column shows the categorization 
for each data set for reference.  

The best performance for each data set is highlighted us-
ing bold face (the differences are statistically significant us-
ing paired t-test, p<0.05). The selected subset by our method 
for each data set is marked out with a ‘*’ character. Note that 
the top four data sets (Iris, Soybean, Thyroid and Wine) are 
the training data sets used to develop our method and the rest 
are the testing data sets for validation of our method. 

The first thing to note is that no single subset consistently 
performs the best for all six testing data sets. This confirms 
our belief that selecting a particular subset is not the best 
solution for all data sets. 

Our proposed framework allows for flexible selection 
based on the characteristics of the given data set and ensem-
ble. We can see that we were able to select the best perform-
ing subset for most of the cases. What is particularly interest-
ing is that by selecting the ensemble members most different 
from P* for the non-stable data sets, we were able to achieve 
significant performance improvement in comparison to using 
the full ensemble (see O8X, Heart and Pima). 

Table 4. The clustering ensemble results of 4 different subsets 
of ensemble members and the best ensemble member result. 

Name 1st (F) 2nd (L) 3rd(H) 4th(M) Best P Data set 
Class 

Iris 0.744* 0.744 0.640 0.725 0.768 S 
Soybean 1* 1 0.557 0.709 0.978 S 
Thyroid 0.257 0.223 0.656* 0.325 0.471 NS 

Wine 0.474 0.376 0.680* 0.494 0.584 NS 
O8X 0.491 0.444 0.655* 0.582 0.637 NS 
Glass 0.269* 0.272 0.263 0.269 0.397 S 

Vehicle 0.146* 0.141 0.119 0.136 0.227 S 
Heart 0.095 0.079 0.340* 0.104 0.169 NS 
Pima 0.071 0.071 0.127* 0.060 0.076 NS 
Seg. 0.406* 0.379 0.390 0.438 0.577 S 

The performance of our method is more striking when 
compared to the best performance among all ensemble mem-
bers. Take the Heart data set for example; its ensemble 
members are highly inaccurate, suggesting a strong bias of 
the clustering procedure for this data set. We categorize 
Heart as non-stable and select subset H. This produced a 
final result substantially more accurate than even the best 
ensemble member. To our best knowledge, such significant 
improvement is rarely seen in the cluster ensemble literature, 

which typically compares the final ensemble performance 
with the average performance of all ensemble members. 

Table 5. Comparing the proposed method with CAS_FL 
Name Proposed method CAS_FL 

Iris(S) 0.74 0.613 
Soybean(S) 1 0.866 
Thyroid(NS) 0.656 0.652 
Wine(NS) 0.680 0.612 
O8X(NS) 0.655 0.637 
Glass(S) 0.269 0.301 
Vehicle(S) 0.146 0.122 
Heart(NS) 0.340 0.207 
Pima(NS) 0.127 0.092 
Seg.(S) 0.406 0.550 

We further compared the proposed method with the state-
of-the-art ensemble selection method, namely the CAS_FL 
method by Fern and Lin [2008]. The NMI values of the final 
partitions produced by both methods are presented in Table 
5. From the table it can be seen that, our method is highly 
competitive compared to CAS_FL. In particular, it consis-
tently outperformed CAS_FL on all non-stable data sets. For 
stable data sets, we notice that CAS_FL sometimes per-
formed better, namely for the Glass and the Segmentation 
data sets.  Note that among all stable data sets, these two data 
sets are the most unstable ones. This suggests that two cate-
gories may not be enough to characterize the differences 
among all data sets, and we may need to use a different se-
lection strategy for data sets like Glass and Segmentation. 

4.4 Discussion  
In this section we seek possible explanations for the supe-

rior performance of our proposed method.  
One interesting question is that is our selection method 

choosing one clustering algorithm over another for the non-
stable data sets? We looked into this question by examining 
the selected ensemble members to see if they are generated 
by the same algorithm.  The answer is: no, it depends. In 
particular, please see Figure 2 for two example non-stable 
data sets: wine and thyroid. The x-axis shows the indexes of 
the clustering solutions. We place all of the K-means cluster-
ing solutions together at position 1-100, whereas the MSF 
solutions are placed at position 101-200. The y-axis shows 
the NMI values of the solutions in relation to P*. For the 
Wine data set, because it was classified as a non-stable data 
set, our system selects subset H. From the figure we can see 
that the MSF solutions had lower NMI values, thus were 
selected over K-means. However, for the Thyroid data set, it 
was not a clear cut selection, suggesting that the proposed 
approach is more complex than selecting one method over 
another.  

Note that we have also tested our method on ensembles 
generated using only the k-means algorithm and the pro-
posed selection strategy still works well in comparison to 
other ensemble selection methods. However, using both al-
gorithms generated more diverse ensemble members and 
achieved better final results than using K-means alone.  
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Figure 3 shows another set of results that may shed some 
lights on our performance improvement. The x-axis shows 
the ensemble member indexes and the y-axis shows the NMI 
values between the ensemble members and the real class 
labels (instead of P*). The ensemble members are ranked in 
decreasing order according to their NMI values with P*. This 
means that, the leftmost ensemble member is most similar to 
P*, and the right most ensemble member is most different 
from P* based on its NMI value with regards to P*. 

  
Wine  Thyroid 

Figure 2. The accuracy of k-means and MSF ensemble 
members with regards to real label values.  

Figure 3 shows two representative data sets, one for each 
category. It can be seen that, for the stable category (Soy-
bean), we observe a negative slope. This suggests that, for 
stable data sets, the NMI value between an ensemble mem-
ber and P* is positively correlated with the NMI value be-
tween the ensemble member and the real label. Higher NMI 
values with P* implies higher NMI values with the real class 
label. This corroborates with our theory that for stable data 
sets the clustering procedure has limited or no bias and en-
sembles mainly work by reducing the variance. In such cas-
es, it is not surprising that F (the full ensemble) performs the 
best because it achieves the maximum variance reduction. 

In contrast, we observe an opposite trend for the non-
stable data set, which showed negative correlation between 
the set of NMI values. By selecting subset H, our method 
was actually selecting the more accurate clustering solutions 
to form the ensemble, which may be the reason for the ob-
served performance improvement for non-stable data sets. 
The strong contrast between the stable and non-stable data 
sets observed here confirms our fundamental hypothesis -- 
that is, different data sets require different treatment in en-
semble design.  

    
Soybean  Thyroid  

Figure 3. The NMI between ensemble members and 
the real label.  

5 Conclusion 
It is our belief that a truly intelligent clustering system 
should adapt its behavior based on the data set characteris-
tics. To our best knowledge, there has not been any serious 
attempt at such a system. In this paper, we introduced an 
adaptive cluster ensemble selection framework as an initial 
step toward this direction. The framework starts by generat-
ing a diverse set of solutions and then combines them into a 
consensus partition P*. We introduce a simple heuristic 
based on the diversity between the ensemble members and 

the consensus partition P* to classify the given data set into 
the stable or non-stable category. Based on the categoriza-
tion of the data set, we then select a special range of ensem-
ble members to form the final ensemble and produce the 
final clustering. As a result, for different data sets, the selec-
tion strategy is different based on the feedback we obtain 
from the data in the original cluster ensemble. Experimental 
results demonstrate that by adaptively selecting the ensemble 
members, the proposed method can significantly improve the 
cluster ensemble performance, sometimes by a substantial 
margin (more than 200% for the Heart data set).  In some 
cases, we were able to produce final solutions that signifi-
cantly outperform even the best ensemble members.  
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